1,634 research outputs found

    Quantum Interference in the Field Ionization of Rydberg Atoms

    Get PDF
    We excite ultracold rubidium atoms in a magneto-optical trap to a coherent superposition of the three |mj | sublevels of the 37d5/2 Rydberg state. After some delay, during which the relative phases of the superposition components can evolve, we apply an electric field pulse to ionize the Rydberg electron and send it to a detector. The electron traverses many avoided crossings in the Stark levels as it ionizes. The net effect of the transitions at these crossings is to mix the amplitudes of the initial superposition into the same final states at ionization. Similar to a Mach-Zehnder interferometer, the three initial superposition components have multiple paths by which they can arrive at ionization and, since the phases of those paths differ, we observe quantum beats as a function of the delay time between excitation and initiation of the ionization pulse. We present a fully quantum-mechanical calculation of the electron’s path to ionization and the resulting interference pattern

    MUC1 Regulates Cyclin D1 Gene Expression Through p120 Catenin and β-catenin

    Get PDF
    MUC1 interacts with β-catenin and p120 catenin to modulate WNT signaling. We investigated the effect of overexpressing MUC1 on the regulation of cyclin D1, a downstream target for the WNT/β-catenin signaling pathway, in two human pancreatic cancer cell lines, Panc-1 and S2-013. We observed a significant enhancement in the activation of cyclin D1 promoter-reporter activity in poorly differentiated Panc1.MUC1F cells that overexpress recombinant MUC1 relative to Panc-1.NEO cells, which express very low levels of endogenous MUC1. In stark contrast, cyclin D1 promoter activity was not affected in moderately differentiated S2-013.MUC1F cells that overexpressed recombinant MUC1 relative to S2-013.NEO cells that expressed low levels of endogenous MUC1. The S2-013 cell line was recently shown to be deficient in p120 catenin. MUC1 is known to interact with P120 catenin. We show here that re-expression of different isoforms of p120 catenin restored cyclin D1 promoter activity. Further, MUC1 affected subcellular localization of p120 catenin in association with one of the main effectors of P120 catenin, the transcriptional repressor Kaiso, supporting the hypothesis that p120 catenin relieved transcriptional repression by Kaiso. Thus, full activation of cyclin D1 promoter activity requires β-catenin activation of TCF-lef and stabilization of specific p120 catenin isoforms to relieve the repression of KAISO. Our data show MUC1 enhances the activities of both β-catenin and p120 catenin

    CD44 modulates Smad1 activation in the BMP-7 signaling pathway

    Get PDF
    Bone morphogenetic protein 7 (BMP-7) regulates cellular metabolism in embryonic and adult tissues. Signal transduction occurs through the activation of intracellular Smad proteins. In this paper, using a yeast two-hybrid screen, Smad1 was found to interact with the cytoplasmic domain of CD44, a receptor for the extracellular matrix macromolecule hyaluronan. Coimmunoprecipitation experiments confirmed the interaction of Smad1 with full-length CD44—interactions that did not occur when CD44 receptors truncated within the cytoplasmic domain were tested. Chondrocytes overexpressing a truncated CD44 on a background of endogenous full-length CD44 no longer exhibited Smad1 nuclear translocation upon BMP-7 stimulation. Further, pretreatment of chondrocytes with Streptomyces hyaluronidase to disrupt extracellular hyaluronan–cell interactions inhibited BMP-7–mediated Smad1 phosphorylation, nuclear translocation of Smad1 or Smad4, and SBE4–luciferase reporter activation. These results support a functional link between the BMP signaling cascade and CD44. Thus, changes in hyaluronan–cell interactions may serve as a means to modulate cellular responsiveness to BMP

    Gymnosperms on the EDGE

    Get PDF
    Driven by limited resources and a sense of urgency, the prioritization of species for conservation has been a persistent concern in conservation science. Gymnosperms (comprising ginkgo, conifers, cycads, and gnetophytes) are one of the most threatened groups of living organisms, with 40% of the species at high risk of extinction, about twice as many as the most recent estimates for all plants (i.e. 21.4%). This high proportion of species facing extinction highlights the urgent action required to secure their future through an objective prioritization approach. The Evolutionary Distinct and Globally Endangered (EDGE) method rapidly ranks species based on their evolutionary distinctiveness and the extinction risks they face. EDGE is applied to gymnosperms using a phylogenetic tree comprising DNA sequence data for 85% of gymnosperm species (923 out of 1090 species), to which the 167 missing species were added, and IUCN Red List assessments available for 92% of species. The effect of different extinction probability transformations and the handling of IUCN data deficient species on the resulting rankings is investigated. Although top entries in our ranking comprise species that were expected to score well (e.g. Wollemia nobilis, Ginkgo biloba), many were unexpected (e.g. Araucaria araucana). These results highlight the necessity of using approaches that integrate evolutionary information in conservation science

    MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer

    Get PDF
    Aberrant glucose metabolism is one of the hallmarks of cancer that facilitates cancer cell survival and proliferation. Here, we demonstrate that MUC1, a large, type I transmembrane protein that is overexpressed in several carcinomas including pancreatic adenocarcinoma, modulates cancer cell metabolism to facilitate growth properties of cancer cells. MUC1 occupies the promoter elements of multiple genes directly involved in glucose metabolism and regulates their expression. Furthermore, MUC1 expression enhances glycolytic activity in pancreatic cancer cells. We also demonstrate that MUC1 expression enhances in vivo glucose uptake and expression of genes involved in glucose uptake and metabolism in orthotopic implantation models of pancreatic cancer. The MUC1 cytoplasmic tail is known to activate multiple signaling pathways through its interactions with several transcription factors/coregulators at the promoter elements of various genes. Our results indicate that MUC1 acts as a modulator of the hypoxic response in pancreatic cancer cells by regulating the expression/stability and activity of hypoxia-inducible factor-1α (HIF-1α). MUC1 physically interacts with HIF-1α and p300 and stabilizes the former at the protein level. By using a ChIP assay, we demonstrate that MUC1 facilitates recruitment of HIF-1α and p300 on glycolytic gene promoters in a hypoxia-dependent manner. Also, by metabolomic studies, we demonstrate that MUC1 regulates multiple metabolite intermediates in the glucose and amino acid metabolic pathways. Thus, our studies indicate that MUC1 acts as a master regulator of the metabolic program and facilitates metabolic alterations in the hypoxic environments that help tumor cells survive and proliferate under such conditions

    Comparative study of deuterium retention and vacancy content of self-ion irradiated tungsten

    Get PDF
    Self-ion irradiation of pure tungsten with 2 MeV W ions provides a way of simulating microstructures generated by neutron irradiation in tungsten components of a fusion reactor. Transmission electron microscopy (TEM) has been used to characterize defects formed in tungsten samples by ion irradiation. It was found that tungsten irradiated to 0.85 dpa at relatively low temperatures develops a characteristic microstructure dominated by dislocation loops and black dots. The density and size distribution of these defects were estimated. Some of the samples exposed to self-ion irradiation were then implanted with deuterium. Thermal Desorption Spectrometry (TDS) analysis was performed to estimate the deuterium inventory as a function of irradiation damage and deuterium release as a function of temperature. Increase of inventory with increasing irradiation dose followed by slight decrease above 0.1 dpa was found. Application of Positron Annihilation Spectroscopy (PAS) to self-irradiated but not deuterium implanted samples enabled an assessment of the density of irradiation defects as a function of exposure to highenergy ions. The PAS results show that the density of defects saturates at doses in the interval from 0.085 to 0.425 displacements per atom (dpa). These results are discussed in the context of recent theoretical simulations exhibiting the saturation of defect microstructure in the high irradiation exposure limit. The saturation of damage found in PAS agrees with the simulation data described in the paper. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )Peer reviewe

    Truncated O-Glycan-Bearing MUC16 Enhances Pancreatic Cancer Cells Aggressiveness via α4β1 Integrin Complexes and FAK Signaling

    Get PDF
    Elevated levels of Mucin-16 (MUC16) in conjunction with a high expression of truncated O-glycans is implicated in playing crucial roles in the malignancy of pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms by which such aberrant glycoforms present on MUC16 itself promote an increased disease burden in PDAC are yet to be elucidated. This study demonstrates that the CRISPR/Cas9-mediated genetic deletion of MUC16 in PDAC cells decreases tumor cell migration. We found that MUC16 enhances tumor malignancy by activating the integrin-linked kinase and focal adhesion kinase (ILK/FAK)-signaling axis. These findings are especially noteworthy in truncated O-glycan (Tn and STn antigen)-expressing PDAC cells. Activation of these oncogenic-signaling pathways resulted in part from interactions between MUC16 and integrin complexes (α4β1), which showed a stronger association with aberrant glycoforms of MUC16. Using a monoclonal antibody to functionally hinder MUC16 significantly reduced the migratory cascades in our model. Together, these findings suggest that truncated O-glycan containing MUC16 exacerbates malignancy in PDAC by activating FAK signaling through specific interactions with α4 and β1 integrin complexes on cancer cell membranes. Targeting these aberrant glycoforms of MUC16 can aid in the development of a novel platform to study and treat metastatic pancreatic cancer

    The effect of local crystalline environment on hydrogen atom behavior in molecular complexes of a proton sponge

    Get PDF
    Proton behavior within the hydrogen bond (HB) networks of five molecular complexes of the proton sponge DMAN and different organic acids is investigated by single-crystal neutron diffraction. The complexes form with either 2:1 (acid:DMAN) or 1:1 stoichiometric ratios and contain common structural motifs. All show proton transfer from an acid to DMAN, forming a DMANH<sup>+</sup> moiety and hydrogen-bonded acid dimers; complexes with halobenzoic acids have acid molecules linked by short, strong, charge-assisted HBs, while all complexes contain a short, strong, intramolecular N–H···N HB in DMANH<sup>+</sup>. The hydrogen atom behavior within the short, strong HBs, accurately described from the neutron data, is rationalized in terms of weak interactions in the local crystal environment, with the position of the proton within both sets of short, strong HBs affected by a combination of the weak interactions in the vicinity of the HBs. A correlation is also found between the thermal motion of the bound proton in the N–H···N HB of DMANH<sup>+</sup> and nearby oxygen atoms when they are sufficiently close to one another. This work shows that all interactions in the local environment combine to determine the behavior of protons within short, strong HBs and that, by taking these interactions into account, further control over the crystal structure and properties may be achievable

    Secular Climate Change on Mars: An Update Using MSL Pressure Data

    Get PDF
    The South Polar Residual Cap (SPRC) on Mars is an icy reservoir of CO2. If all the CO2 trapped in the SPRC were released to the atmosphere the mean annual global surface pressure would rise by approx. 20 Pa. Repeated MOC and HiRISE imaging of scarp retreat rates within the SPRC have led to the suggestion that the SPRC is losing mass. Estimates for the loss rate vary between 0.5 Pa per Mars Deacde to 13 Pa per Mars Decade. Assuming 80% of this loss goes directly to the atmosphere, and that the loss is monotonic, the global annual mean surface pressure should have increased between approx. 1-20 Pa since the Viking mission (19 Mars years ago)
    • …
    corecore