102 research outputs found

    Conglomerates in the Retail Trade

    Get PDF

    Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    Full text link
    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.Comment: to be published in At. Data Nucl. Data Table

    Epidemiologic and clinical updates on impulse control disorders: a critical review

    Get PDF
    The article reviews the current knowledge about the impulse control disorders (ICDs) with specific emphasis on epidemiological and pharmacological advances. In addition to the traditional ICDs present in the DSM-IVβ€”pathological gambling, trichotillomania, kleptomania, pyromania and intermittent explosive disorderβ€”a brief description of the new proposed ICDsβ€”compulsive–impulsive (C–I) Internet usage disorder, C–I sexual behaviors, C–I skin picking and C–I shoppingβ€”is provided. Specifically, the article summarizes the phenomenology, epidemiology and comorbidity of the ICDs. Particular attention is paid to the relationship between ICDs and obsessive–compulsive disorder (OCD). Finally, current pharmacological options for treating ICDs are presented and discussed

    Cardiac Expression of Microsomal Triglyceride Transfer Protein Is Increased in Obesity and Serves to Attenuate Cardiac Triglyceride Accumulation

    Get PDF
    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and Ξ²-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease

    Tissue specific characteristics of cells isolated from human and rat tendons and ligaments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tendon and ligament injuries are common and costly in terms of surgery and rehabilitation. This might be improved by using tissue engineered constructs to accelerate the repair process; a method used successfully for skin wound healing and cartilage repair. Progress in this field has however been limited; possibly due to an over-simplistic choice of donor cell. For tissue engineering purposes it is often assumed that all tendon and ligament cells are similar despite their differing roles and biomechanics. To clarify this, we have characterised cells from various tendons and ligaments of human and rat origin in terms of proliferation, response to dexamethasone and cell surface marker expression.</p> <p>Methods</p> <p>Cells isolated from tendons by collagenase digestion were plated out in DMEM containing 10% fetal calf serum, penicillin/streptomycin and ultraglutamine. Cell number and collagen accumulation were by determined methylene blue and Sirius red staining respectively. Expression of cell surface markers was established by flow cytometry.</p> <p>Results</p> <p>In the CFU-f assay, human PT-derived cells produced more and bigger colonies suggesting the presence of more progenitor cells with a higher proliferative capacity. Dexamethasone had no effect on colony number in ACL or PT cells but 10 nM dexamethasone increased colony size in ACL cultures whereas higher concentrations decreased colony size in both ACL and PT cultures. In secondary subcultures, dexamethasone had no significant effect on PT cultures whereas a stimulation was seen at low concentrations in the ACL cultures and an inhibition at higher concentrations. Collagen accumulation was inhibited with increasing doses in both ACL and PT cultures. This differential response was also seen in rat-derived cells with similar differences being seen between Achilles, Patellar and tail tendon cells. Cell surface marker expression was also source dependent; CD90 was expressed at higher levels by PT cells and in both humans and rats whereas D7fib was expressed at lower levels by PT cells in humans.</p> <p>Conclusion</p> <p>These data show that tendon & ligament cells from different sources possess intrinsic differences in terms of their growth, dexamethasone responsiveness and cell surface marker expression. This suggests that for tissue engineering purposes the cell source must be carefully considered to maximise their efficacy.</p

    The Right of Reply: An Exchange of Views

    No full text
    • …
    corecore