1,277 research outputs found

    Automatic lightning location system

    Get PDF
    Hyperbolic triangulation method was used for locating lightning storm path and position from VHF lightning charge emissions. Possible applications in electric power companies, forest fire lookout centers, airports, and pipeline companies are indicated

    An electric-field representation of the harmonic XY model

    Get PDF
    The two-dimensional harmonic XY (HXY) model is a spin model in which the classical spins interact via a piecewise parabolic potential. We argue that the HXY model should be regarded as the canonical classical lattice spin model of phase fluctuations in two-dimensional condensates, as it is the simplest model that guarantees the modular symmetry of the experimental systems. Here we formulate a lattice electric-field representation of the HXY model and contrast this with an analogous representation of the Villain model and the two-dimensional Coulomb gas with a purely rotational auxiliary field. We find that the HXY model is a spin-model analogue of a lattice electric-field model of the Coulomb gas with an auxiliary field, but with a temperature-dependent vacuum (electric) permittivity that encodes the coupling of the spin vortices to their background spin-wave medium. The spin vortices map to the Coulomb charges, while the spin-wave fluctuations correspond to auxiliary-field fluctuations. The coupling explains the striking differences in the high-temperature asymptotes of the specific heats of the HXY model and the Coulomb gas with an auxiliary field. Our results elucidate the propagation of effective long-range interactions throughout the HXY model (whose interactions are purely local) by the lattice electric fields. They also imply that global spin-twist excitations (topological-sector fluctuations) generated by local spin dynamics are ergodically excluded in the low-temperature phase. We discuss the relevance of these results to condensate physics.Comment: 13 pages, 10 figure

    Topological-sector fluctuations and ergodicity breaking at the Berezinskii-Kosterlitz-Thouless transition

    Get PDF
    The Berezinskii-Kosterlitz-Thouless (BKT) phase transition drives the unbinding of topological defects in many two-dimensional systems. In the two-dimensional Coulomb gas, it corresponds to an insulator-conductor transition driven by charge deconfinement. We investigate the global topological properties of this transition, both analytically and by numerical simulation, using a lattice-field description of the two-dimensional Coulomb gas on a torus. The BKT transition is shown to be an ergodicity breaking between the topological sectors of the electric field, which implies a definition of topological order in terms of broken ergodicity. The breakdown of local topological order at the BKT transition leads to the excitation of global topological defects in the electric field, corresponding to different topological sectors. The quantized nature of these classical excitations, and their strict suppression by ergodicity breaking in the low-temperature phase, afford striking global signatures of topological-sector fluctuations at the BKT transition. We discuss how these signatures could be detected in experiments on, for example, magnetic films and cold-atom systems.Comment: 11 pages, 6 figure

    Phase order in superfluid helium films

    Get PDF
    Classic experimental data on helium films are transformed to estimate a finite-size phase order parameter that measures the thermal degradation of the condensate fraction in the two-dimensional superfluid. The order parameter is found to evolve thermally with the exponent β=3π2/128\beta = 3 \pi^2/128, a characteristic, in analogous magnetic systems, of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Universal scaling near the BKT fixed point generates a collapse of experimental data on helium and ferromagnetic films, and implies new experiments and theoretical protocols to explore the phase order. These results give a striking example of experimental finite-size scaling in a critical system that is broadly relevant to two-dimensional Bose fluids.Comment: 6 pages, 2 figure

    Onsager's Wien Effect on a Lattice

    Full text link
    The Second Wien Effect describes the non-linear, non-equilibrium response of a weak electrolyte in moderate to high electric fields. Onsager's 1934 electrodiffusion theory along with various extensions has been invoked for systems and phenomena as diverse as solar cells, surfactant solutions, water splitting reactions, dielectric liquids, electrohydrodynamic flow, water and ice physics, electrical double layers, non-Ohmic conduction in semiconductors and oxide glasses, biochemical nerve response and magnetic monopoles in spin ice. In view of this technological importance and the experimental ubiquity of such phenomena, it is surprising that Onsager's Wien effect has never been studied by numerical simulation. Here we present simulations of a lattice Coulomb gas, treating the widely applicable case of a double equilibrium for free charge generation. We obtain detailed characterisation of the Wien effect and confirm the accuracy of the analytical theories as regards the field evolution of the free charge density and correlations. We also demonstrate that simulations can uncover further corrections, such as how the field-dependent conductivity may be influenced by details of microscopic dynamics. We conclude that lattice simulation offers a powerful means by which to investigate system-specific corrections to the Onsager theory, and thus constitutes a valuable tool for detailed theoretical studies of the numerous practical applications of the Second Wien Effect.Comment: Main: 12 pages, 4 figures. Supplementary Information: 7 page

    Crystal Shape-Dependent Magnetic Susceptibility and Curie Law Crossover in the Spin Ices Dy2Ti2O7 and Ho2Ti2O7

    Full text link
    We present an experimental determination of the isothermal magnetic susceptibility of the spin ice materials Dy2Ti2O7 and Ho2Ti2O7 in the temperature range 1.8-300 K. The use of spherical crystals has allowed the accurate correction for demagnetizing fields and allowed the true bulk isothermal susceptibility X_T(T) to be estimated. This has been compared to a theoretical expression based on a Husimi tree approximation to the spin ice model. Agreement between experiment and theory is excellent at T > 10 K, but systematic deviations occur below that temperature. Our results largely resolve an apparent disagreement between neutron scattering and bulk measurements that has been previously noted. They also show that the use of non-spherical crystals in magnetization studies of spin ice may introduce very significant systematic errors, although we note some interesting - and possibly new - systematics concerning the demagnetizing factor in cuboidal samples. Finally, our results show how experimental susceptibility measurements on spin ices may be used to extract the characteristic energy scale of the system and the corresponding chemical potential for emergent magnetic monopoles.Comment: 11 pages, 3 figures 1 table. Manuscript submitte

    Spin ice under pressure: symmetry enhancement and infinite order multicriticality

    Get PDF
    We study the low-temperature behaviour of spin ice when uniaxial pressure induces a tetragonal distortion. There is a phase transition between a Coulomb liquid and a fully magnetised phase. Unusually, it combines features of discontinuous and continuous transitions: the order parameter exhibits a jump, but this is accompanied by a divergent susceptibility and vanishing domain wall tension. All these aspects can be understood as a consequence of an emergent SU(2) symmetry at the critical point. We map out a possible experimental realisation

    A Three Dimensional Kasteleyn Transition: Spin Ice in a [100] Field

    Get PDF
    We examine the statistical mechanics of spin-ice materials with a [100] magnetic field. We show that the approach to saturated magnetisation is, in the low-temperature limit, an example of a 3D Kasteleyn transition, which is topological in the sense that magnetisation is changed only by excitations that span the entire system. We study the transition analytically and using a Monte Carlo cluster algorithm, and compare our results with recent data from experiments on Dy2Ti2O7.Comment: 4 pages, 5 figure

    A single amino acid determines preference between phospholipids and reveals length restriction for activation ofthe S1P<sub>4</sub> receptor

    Get PDF
    Background&lt;br/&gt;&lt;br/&gt; Sphingosine-1-phosphate and lysophosphatidic acid (LPA) are ligands for two related families of G protein-coupled receptors, the S1P and LPA receptors, respectively. The lysophospholipid ligands of these receptors are structurally similar, however recognition of these lipids by these receptors is highly selective. A single residue present within the third transmembrane domain (TM) of S1P receptors is thought to determine ligand selectivity; replacement of the naturally occurring glutamic acid with glutamine (present at this position in the LPA receptors) has previously been shown to be sufficient to change the specificity of S1P&lt;sub&gt;1&lt;/sub&gt; from S1P to 18:1 LPA.&lt;br/&gt;&lt;br/&gt; Results&lt;br/&gt;&lt;br/&gt; We tested whether mutation of this "ligand selectivity" residue to glutamine could confer LPA-responsiveness to the related S1P receptor, S1P&lt;sub&gt;4&lt;/sub&gt;. This mutation severely affected the response of S1P&lt;sub&gt;4&lt;/sub&gt; to S1P in a [&lt;sup&gt;35&lt;/sup&gt;S]GTPγS binding assay, and imparted sensitivity to LPA species in the order 14:0 LPA &gt; 16:0 LPA &gt; 18:1 LPA. These results indicate a length restriction for activation of this receptor and demonstrate the utility of using LPA-responsive S1P receptor mutants to probe binding pocket length using readily available LPA species. Computational modelling of the interactions between these ligands and both wild type and mutant S1P&lt;sub&gt;4&lt;/sub&gt; receptors showed excellent agreement with experimental data, therefore confirming the fundamental role of this residue in ligand recognition by S1P receptors.&lt;br/&gt;&lt;br/&gt; Conclusions&lt;br/&gt;&lt;br/&gt; Glutamic acid in the third transmembrane domain of the S1P receptors is a general selectivity switch regulating response to S1P over the closely related phospholipids, LPA. Mutation of this residue to glutamine confers LPA responsiveness with preference for short-chain species. The preference for short-chain LPA species indicates a length restriction different from the closely related S1P&lt;sub&gt;1&lt;/sub&gt; receptor
    corecore