26 research outputs found

    Emissions

    Get PDF
    This chapter assesses the current state of the science regarding the composition, intensity, and drivers of wildland fire emissions in the USA and Canada. Globally and in the USA wildland fires are a major source of gases and aerosols which have significant air quality impacts and climate interactions. Wildland fire smoke can trigger severe pollution episodes with substantial effects on public health. Fire emissions can degrade air quality at considerable distances downwind, hampering efforts by air regulators to meet air standards. Fires are a major global source of aerosols which affect the climate system by absorbing and scattering radiation and by altering optical properties, coverage, and lifetime of clouds. A thorough understanding of fire emissions is essential for effectively addressing societal and climate consequences of wildland fire smoke

    Increased cytotoxicity of oxidized flame soot

    Get PDF
    AbstractCombustion–generated particles released into the atmosphere undergo reactions with oxidants, which can change the particles’ physiochemical characteristics. In this work, we compare the physical and chemical properties and cellular response of particles fresh from a flame with those oxidized by ozone and nitrogen dioxide. The reaction with ozone and nitrogen dioxide does not significantly modify the physical characteristics of the particles (primary particle size, fractal dimension, and surface area). However, oxidation affects the chemical characteristics of the particles, creating more oxygen and nitrogen containing functional groups, and increases their hydrophilicity. In addition, oxidized soot generates more reactive oxygen species, as measured by the dithiothreitol (DTT) assay. Furthermore, oxidized soot is 1.5 – 2 times more toxic than soot that was not reacted with ozone, but the inflammatory response, measured by interleukin–8 (IL–8) secretion, is unchanged. These results imply that combustion–generated particles released into the atmosphere will have an increased toxicity on or after high ozone days

    Characterization of Particle Emissions and Fate of Nanomaterials During Incineration

    Get PDF
    As the use of nanotechnology in consumer products continues to grow, it is inevitable that some nanomaterials will end up in the waste stream and will be incinerated. Through laboratory-scale incineration of paper and plastic wastes containing nanomaterials, we assessed their effect on emissions of particulate matter (PM) and the effect of incineration on the nanomaterials themselves. The presence of nanomaterials did not significantly influence the particle number emission factor. The PM size distribution was not affected except at very high mass loadings (10 wt%) of the nanomaterial, in which case the PM shifted toward smaller sizes; such loadings are not expected to be present in many consumer products. Metal oxide nanomaterials reduced emissions of particle-bound polycyclic aromatic hydrocarbons. Most of the nanomaterials that remained in the bottom ash retained their original size and morphology but formed large aggregates. Only small amounts of the nanomaterials (0.023–180 mg g−1 of nanomaterial) partitioned into PM, and the emission factors of nanomaterials from an incinerator equipped with an electrostatic precipitator are expected to be low. However, a sustainable disposal method for nanomaterials in the bottom ash is needed, as a majority of them partitioned into this fraction and may thus end up in landfills upon disposal of the ash

    Toxicity of Silver Nanoparticles at the Air-Liquid Interface

    Get PDF
    Silver nanoparticles are one of the most prevalent nanomaterials in consumer products. Some of these products are likely to be aerosolized, making silver nanoparticles a high priority for inhalation toxicity assessment. To study the inhalation toxicity of silver nanoparticles, we have exposed cultured lung cells to them at the air-liquid interface. Cells were exposed to suspensions of silver or nickel oxide (positive control) nanoparticles at concentrations of 2.6, 6.6, and 13.2 μg cm−2 (volume concentrations of 10, 25, and 50 μg ml−1) and to 0.7 μg cm−2 silver or 2.1 μg cm−2 nickel oxide aerosol at the air-liquid interface. Unlike a number of in vitro studies employing suspensions of silver nanoparticles, which have shown strong toxic effects, both suspensions and aerosolized nanoparticles caused negligible cytotoxicity and only a mild inflammatory response, in agreement with animal exposures. Additionally, we have developed a novel method using a differential mobility analyzer to select aerosolized nanoparticles of a single diameter to assess the size-dependent toxicity of silver nanoparticles

    Effects of Aftermarket Control Technologies on Gas and Particle Phase Oxidative Potential from Diesel Engine Emissions

    No full text
    Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) and varying power output (230 kW, 400 kW, and 600 kW) at 50% and 90% load to determine concentrations of gaseous (GROS) and PM reactive oxygen species (PMROS). In addition, the influence of three modern emission control technologies on ROS emissions was evaluated: active and passive diesel particulate filters (A-DPF and P-DPF) and a diesel oxidation catalyst (DOC). PMROS made up 30–50% of the total ROS measured without aftermarket controls. All applied controls removed PMROS by more than 75% on average. However, the oxidative potential of PM downstream of these devices was not diminished at the same rate and particles surviving the A-PDF had an even higher oxidative potential on a per PM mass basis compared to the particles emitted by uncontrolled gensets. Further, the GROS as compared to PMROS emissions were not reduced with the same efficiency (<36%). GROS concentrations were highest with the DOC in use, indicating continued formation of GROS with this control. Correlation analyses showed that PMROS and to a lesser extent GROS have a good correlation with semivolatile organic carbon (OC1) subfraction. In addition, results suggest that chemical composition, rather than PM size, is responsible for differences in the PM oxidative potential

    Emissions of Polycyclic Aromatic Hydrocarbons, Polychlorinated Dibenzo‑<i>p</i>‑Dioxins, and Dibenzofurans from Incineration of Nanomaterials

    No full text
    Disposal of some nanomaterial-laden waste through incineration is inevitable, and nanomaterials’ influence on combustion byproduct formation under high-temperature, oxidative conditions is not well understood. This work reports the formation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated-dibenzo-<i>p</i>-dioxins and dibenzofurans (PCDD/Fs) from incineration of paper and plastic waste containing various nanomaterials, including titania, nickel oxide, silver, ceria, iron oxide, quantum dots, and C<sub>60</sub>-fullerene, in a laboratory-scale furnace. The presence of nanomaterials in the waste stream resulted in higher emissions of some PAH species and lower emissions of others, depending on the type of waste. The major PAH species formed were phenanthrene and anthracene, and emissions were sensitive to the amount of nanomaterials in the waste. Generally, there were no significant differences in emission factors for the larger PAH species when nanomaterials were added to the waste. The total PAH emission factors were on average ∼6 times higher for waste spiked with nanomaterials v. their bulk counterparts. Emissions of chlorinated dioxins from poly­(vinyl chloride) (PVC) waste were not detected; however, chlorinated furans were formed at elevated concentrations with wastes containing silver and titania nanomaterials, and toxicity was attributable mainly to 2,3,4,7,8-pentachlorodibenzofuran. The combination of high specific surface area and catalytic, including electrocatalytic, properties of nanomaterials might be responsible for affecting the formation of toxic pollutants during incineration
    corecore