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Chapter 5
Emissions

Shawn P. Urbanski, Susan M. O’Neill, Amara L. Holder, Sarah A. Green,
and Rick L. Graw

Abstract This chapter assesses the current state of the science regarding the compo-
sition, intensity, and drivers of wildland fire emissions in the USA and Canada. Glob-
ally and in the USA wildland fires are a major source of gases and aerosols which
have significant air quality impacts and climate interactions. Wildland fire smoke
can trigger severe pollution episodes with substantial effects on public health. Fire
emissions can degrade air quality at considerable distances downwind, hampering
efforts by air regulators to meet air standards. Fires are a major global source of
aerosols which affect the climate system by absorbing and scattering radiation and
by altering optical properties, coverage, and lifetime of clouds. A thorough under-
standing of fire emissions is essential for effectively addressing societal and climate
consequences of wildland fire smoke.
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5.1 Introduction

Wildland fire smoke contains hundreds of gases (Urbanski 2014; Hatch et al. 2015)
and aerosols diverse in size, composition, and morphology (Reid et al. 2005a, b)
(Box 5.1).1 Globally and in the USA wildland fires are a major source of gases
and aerosols (Bond et al. 2013; Werf et al. 2017), and the production, dispersion,
and transformation of fire emissions have significant air quality impacts and climate
interactions. Wildfire smoke can trigger severe, multi-week pollution episodes over
large areas with substantial impacts on public health (Chap. 7). Wildland fires are
a major source of fine particulate matter PM2.5 (particulates with an aerodynamic
diameter <2.5µm) (Lu et al. 2016; Brey et al. 2018) and can contribute to ozone (O3)
production (McClure and Jaffe 2018), both of which are criteria pollutants regulated
under the U.S. Clean Air Act. Aerosols from fires affect the climate system by
absorbing and scattering radiation (Bond et al. 2013); altering optical properties,
coverage, and lifetime of clouds (Lohmann and Feichter 2005; Koch and Genio
2010); and lowering snow and ice albedo in the Arctic (Hansen and Nazarenko
2004).

Box 5.1 Biomass Burning Aerosol
The terms aerosol, particle, and particulate matter (PM) are used interchange-
ably in atmospheric sciences and in this chapter. Atmospheric aerosols are
liquid and/or solid particles dispersed in air. Aerosols are often described
according to aerodynamic size thresholds:

Aerodynamic diameter (D) (µm) Nomenclature Term

<0.1 PM0.1 Ultrafine

<1 PM1 Submicron

<2.5 PM2.5 Fine

2.5–10 PM2.5–PM10 Coarse

<10 PM10

The particle count and mass in fresh smoke from wildland fires is predomi-
nantlyPM1 (Reid et al. 2005b, Sect. 5.2.2.1). For context, a typical clouddroplet
has a diameter of ~20 µm, the width of human hair is ~50 µm (see Fig. 7.1),
and the diameter of a typical raindrop is ~2000µm. PM2.5 and PM10 are among
the six criteria pollutants for which the USEPA has set National Ambient Air
Quality Standards under the federal Clean Air Act. The relationship between
particle size and health impacts is discussed in Chap. 7.

1 The terms aerosol, particle, and particulate matter (PM) are used interchangeably in atmospheric
sciences and in this chapter.
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In addition to size, aerosols are also classified according to composition:
organic (OA), non-refractory (non-light absorbing and non-volatilizing), inor-
ganic (sulfate, SO4

2−; nitrate, NO3
−; ammonium, NH4

+; and chloride, Cl−),
black carbon (BC), and many other trace elements (e.g., K, Ca, Mg). The terms
BC, rBC (refractory BC), elemental carbon, and soot are often used inter-
changeably to refer to light-absorbing carbonaceous particles with a graphitic-
like structure (Buseck et al. 2014; Lack et al. 2014). OA is a mixture of thou-
sands of chemical species (Gilardoni 2017), many of which absorb light pref-
erentially in the UV wavelength range and are labeled as “brown carbon.” The
carbon fraction of OA is referred to as organic carbon (OC). OA dominates
the composition of particles in fresh smoke, comprising >60% of PM1 mass
as seen below:

Understanding emissions—the composition and intensity of smoke—is vital for
addressing the wide spectrum of decision support needs initiated by wildland fire
smoke.Accurately characterizing the dependence of emissions on fuels, fire behavior,
and environmental conditions is a key to improving basic smoke management prac-
tices and facilitating use of prescribed fire. Emissions are essential input to smoke
forecasting systems relied upon by public health officials, air quality forecasters,
and fire management teams to mitigate the impacts of wildland fire smoke on public
health and safety. Air regulators need better fire emission estimates to quantify the
contribution of wildland fires to air pollution and thereby inform decision making
about control and regulation of anthropogenic air pollution sources. Robust emission
estimates are also needed to quantify the contribution of fires to urban air pollution,
assess human smoke exposure, and elucidate the role of smoke in climate forcing.
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This chapter assesses the current state of the science on emissions from wild-
land fires in the USA and Canada. The chapter opens with a summary of current
knowledge regarding the composition, intensity, and drivers of emissions. Next, we
review emission datasets and tools available for smoke forecasting, regulatory activ-
ities, smoke management, and research. The chapter concludes with a discussion of
critical gaps in our understanding of emissions.

5.2 Current State of the Science

5.2.1 Fuel Properties, Combustion Processes, and Emissions

The relative abundance of pollutants in fresh smoke (smoke which has not expe-
rienced significant photochemical processing, generally less than ~30 min old; see
Akagi et al. 2011) is quantified with emission factors (EFs). EFs are determined by
measuring the concentration of gases and aerosols in fresh smoke and in the ambient
air outside the smoke plume. For a chemical species X, the concentration difference
between the fresh smoke plume and background air defines the excess mixing ratio,
�X = Xplume − Xbackground. The EF for species X (EFX), the mass of X emitted per
mass of dry biomass consumed, can be calculated from �X using the carbon mass
balance method, a common implementation of which is shown in Eqs. 5.1 and 5.2
(Box 5.2). The carbonmass balancemethod assumes all biomass carbon is volatilized
as gases and aerosol is measured as excess mixing ratios and included in the sum
of Eq. 5.2. In practice, many of the carbonaceous gases produced in combustion are
not measured. However, because >90% of the carbon emitted is contained in carbon
dioxide (CO2), carbon monoxide (CO), and methane (CH4), inclusion of only these
gases in Eq. 5.2 results in only a slight overestimate of EFs (Yokelson et al. 1999).
Additional assumptions of the carbon mass balance method are uniform mixing of
all smoke components and constant background composition.

Box 5.2 Emission Factor by the Carbon Mass Balance Method

EFX = FC × 1000
(
g kg−1

) × MMX

12
× ERX

CT
(5.1)

In Eq. 5.1, Fc is the mass fraction of carbon in the dry biomass, MMX is the
molar mass of X (g mole−1), 12 is the molar mass of carbon (g mole−1), ERX

is the emission ratio of X to CO2, and CT is given by Eq. 5.2.

CT =
∑n

j=1
N j × �C j

�CO2
(5.2)

In Eq. 5.2, n is the number of carbon-containing species measured, Nj is
the number of carbon atoms in species j, and �Cj is the excess mixing ratio of
species j.
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Principal factors that affect combustion, and hence the composition, of fresh
wildland fire emissions are the structure and arrangement of fuels—size, shape and
packing of fuel particles, and fuel condition—moisture content, growth stage, and
soundness of woody material (Chap. 2). Fuel chemistry is also important. Emissions
of gases and particles containing trace elements such as nitrogen (N), sulfur (S),
and chlorine (Cl) are limited by the amounts of these elements in the fuel. Further,
compounds often present in biomass (e.g., terpenoid compounds) can be released
through distillation prior to the onset of pyrolysis. Ambient conditions, such as wind
and terrain, influence both fire behavior and emissions.

The general relationship among fuel bed properties, combustion processes, and
emissions is depicted in Fig. 5.1. Small fuel particles with high surface-to-volume
ratio, loosely packed fuels, and low moisture content favor flaming combustion
(Chap. 2). Grass, foliage, loosely packed litter, and fine woody debris tend to burn
predominantly by flaming combustion, given moderate to low moisture content.
Smoldering is an important process in the combustion of large-diameter woody
fuels, dominating the burning of duff, organic soil, and peat. The relative amount of
smoldering combustion increases with fuel moisture content.

In wildland fires, the combustion processes—preignition/distillation, flaming,
smoldering, and glowing/char oxidation—occur simultaneously and often in prox-
imity (Yokelson et al. 1996; Ottmar 2001; Chaps. 2 and 3). The chemical composition
of smoke is related to the relative amounts of flaming and smoldering combustion
(Chap. 6). Some species are emitted almost exclusively by flaming or smoldering

Fig. 5.1 General relationships among fuel bed properties, combustion processes, and emissions.
VOC is volatile organic compound
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combustion. Flaming combustion produces CO2, nitrogen oxides (NOx), hydrogen
chloride (HCl), sulfur dioxide (SO2), nitrous acid (HONO) (Burling et al. 2010), and
black carbon (BC) (McMeeking et al. 2009). CO, CH4, ammonia (NH3), many non-
methane organic gases (NMOG), and organic aerosol (OA) are associated with smol-
dering combustion (McMeeking et al. 2009; Burling et al. 2010). Several NMOGs
are produced during both flaming and smoldering combustion (Burling et al. 2010).

The fraction of combusted fuel carbon emitted as products other than CO2

increases with the proportion of smoldering combustion. A widely used metric for
characterizing burning conditions is modified combustion efficiency, MCE (MCE =
�CO2/(�CO2 + �CO)), an index of the relative amount of flaming and smoldering
combustion (Yokelson et al. 1999). Carbonaceous emissions of greatest consequence
for air quality (NMOGs and OA) are products of incomplete combustion, and their
EFs increase with the proportion of smoldering combustion (Fig. 5.1). The EFs of
many NMOGs are negatively correlated with MCE. EFs measured in the laboratory
for four NMOGs are plotted versus MCE in Fig. 5.2. The strength of the EF–MCE
relationship tends to differ with fuel, being greatest for fine understory forest fuels
(litter, woody debris, grass) and weakest for fuels prone to long-term smoldering and
glowing combustion such as logs and organic soil.

Fig. 5.2 Emission factors for methanol, formaldehyde, ethene, and furan plotted versus modified
combustion efficiency (MCE). Data from burning of western US coniferous ecosystem fuels during
the FIREX laboratory intensive study (excludes duff and logs) (Selimovic et al. 2018)
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Fig. 5.3 Modified combustion efficiency (MCE) for different fire types. PF = prescribed fire, WF
= wildfire. Grass, shrub, and prescribed forest fire based on Urbanski (2014). Wildfire MCE based
on Liu et al. (2017), O’Shea et al. (2013), Urbanski (2013), Hornbrook et al. (2011), and Simpson
et al. (2011)

The tendency for NMOG and OAEFs to be correlated withMCE provides insight
into how emissions of these species differ across fuel types. MCE is highest for fires
in herbaceous and shrub fuels and lowest for forest fuels (Fig. 5.3). Forest wildfire
MCEs are lower than those for prescribed forest fires. These observedMCEs indicate
total NMOG and OA emissions, per unit mass of fuel burned, trend as: herb/shrub <
forest prescribed fire < forest wildfire.

5.2.2 Smoke Composition and Emission Factors

Theprimary emission products ofwildlandfire areCO2 andH2O.However, theminor
components of smoke—aerosols, NMOGs, and inorganic gases—are of primary
concern to atmospheric scientists, public health officials, air regulators, and land
managers. A synthesis by Andreae and Merlet (2001) reported EFs for 92 species.
Between 2006 and 2016, a series of laboratory studies at the U.S. Forest Service
Missoula Fire Sciences Laboratory brought together over 100 researchers frommore
than 20 institutions to characterize gaseous and particulate emissions from simulated
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wildland fires (McMeeking et al. 2009; Burling et al. 2010; Koss et al. 2018). During
the same period, several field studies validated laboratory results and developed a
framework for extrapolating laboratory-measured EFs to “real fires” in the natural
environment. As a result, more than 500 gases have been identified in fresh smoke,
and our knowledge regarding the physical characteristics (size and morphology),
chemical composition, and optical properties of aerosols has expanded greatly. This
section reviews the current state of the science regarding the composition of wildland
fire emissions based on recent advances from these laboratory and field studies.

5.2.2.1 Aerosol Emissions

Aerosols are classified by their physical characteristics (size andmorphology), chem-
ical composition (inorganic, black carbon, organic species, degree of oxidation, etc.),
and/or optical properties (Box 5.1). Of most interest for measuring and modeling
impacts of aerosol from smoke are the primary emissions of particles—primarily
OA and lesser amounts of BC and inorganic species. In addition, it is important to
identify the numerous volatile and semi-volatile organic compounds (SVOCs) that
can exist in both the gas phase and particle phase. These SVOC compounds can
contribute to secondary organic aerosol (SOA) that is formed by reactions in the
atmosphere. SVOC species can also coat BC, which modifies its optical, physical,
and chemical properties.

Particulate matter (PM) is the pollutant principally responsible for the detrimental
public health impacts and visibility degradation caused by wildland fire smoke
(Chap. 7). Although PM air quality has improved across much of the USA over
the past 30 years due to reduced anthropogenic emissions, it has deteriorated in
regions prone to smoke impacts from wildfires (McClure and Jaffe 2018). There-
fore, characterizing the range of EFs for particulate matter (EFPM) for wildfires is
critical.

PM produced by wildland fires is dominated by OA with a range of volatilities.
In the natural environment, as a fresh smoke plume dilutes and cools, competing
condensation/evaporation processes can alter PM2.5 mass and hence the measured
EFPM2.5 (Grieshop et al. 2009). For this reason, extrapolating EFPM2.5 measured in
laboratory studies, where smoke concentrations are typically very high, to real fires
is generally unreliable (May et al., 2014, 2015), so wildfire EFPM2.5 are based on
limited field observations.

Measurements of EFPM for US wildfires are limited; Liu et al. (2017) reported
EFPM1 (aerosol with an aerodynamic diameter <1.0 µm) for only three wildfires.
However, Garofalo et al. (2019) reported OA:CO emission ratios (�OA/�CO) for
16 western US wildfires. Since wildland fire-produced PM1 is mostly OA (Box 5.1),
this extensive dataset can provide an improved estimate of the average magnitude
and range of wildfire EFPM1.

Using methods described below (Sect. 5.4.2), Garofalo et al. (2019) showed that
�OA/�CO can be combined with EFCOmeasured for western wildfires in previous
studies to estimate EFOA for a wider range of fires than reported in Liu et al.
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(2017). Based on study average EFCO from Liu et al. (2017) (89 g kg−1, n = 3)
and Urbanski (2013) (135 g kg−1, n = 9), the Garofalo et al. (2019) �OA/�CO
(0.26 µg sm−3 ppbv−1, n = 16) indicates an EFOA range of 26–40 g kg−1.

This exercise suggests EFPM1 for some wildfires may be up to 50% higher than
that reported by Liu et al. (2017). The choice of which EF to use in a model can
have significant implications for current air quality forecasting and projections of
emissions and air quality impacts associated with an anticipated increase in wildfire
activity in the western USA (Yue et al. 2013; Liu et al. 2016; Ford et al. 2018;
Chap. 1).

Concern has arisen about the health impacts of ultrafine particles (UFPs) or
nanoparticles (aerosol with a diameter <100 nm) (Leonard et al. 2007), which may
react differently in the body than larger particles (Chap. 7). However, it has been
difficult to draw firm conclusions on exposure and health effects of UFPs because of
limited field measurements and problems resolving the effects of PM2.5 and UFPs in
epidemiologic and experimental studies (Baldauf et al. 2016). Nevertheless, it is clear
wildland fires release large numbers of UFPs, and their concentration differs with
combustion conditions and smoke age. As for other size ranges, UFPs differ with
combustion conditions and smoke age. For example, a laboratory study of burning
chaparral vegetation found the most numerous particles emitted were in the range
of 30–50-nm diameter; the total concentration of particles decreased approximately
100-fold from the flaming to smoldering phase of combustion, while the relative
fraction of very fine particles increased (Hosseini et al. 2010).

BC, commonly known as soot, is non-reactive, insoluble, and strongly light
absorbing. Globally, biomass burning is the largest single source of BC to the
atmosphere (Bond et al. 2013). Terminology for BC is not consistent and generally
depends on measurement techniques: thermal–optical methods measure elemental
carbon (EC) on filter samples; optical measurements derive BC mass from in situ
absorbance and/or scattering data or light attenuation through filter deposit using a
mass conversion factor; and laser-induced incandescence (LII) measures refractory
BC (rBC) from single-particle incandescence (Petzold et al. 2013). Inconsisten-
cies among measurement techniques and terminology have resulted in uncertainties
in EFs, although newer methods (e.g., LII) are beginning to identify relationships
between the different methods (May et al. 2014; Li et al. 2019a, b).

Aerosol from biomass burning consists mainly of OA, which typically makes up
over 90%of themass. Almost all BC is produced fromflaming phases of combustion,
whereas smoldering phases shift emissions toward a greater mass of OA and more
particles overall (Bond et al. 2013; May et al. 2014). Jen et al. (2019) found that EFs
for EC increase with MCE (flaming), and OC decreases with MCE, with both fitting
well to logarithmic functions. Some material is emitted as primary organic aerosol
(POA), especially during smoldering phases; other organic compounds are initially
emitted as gases, which may condense upon cooling as they move away from the
combustion zone. The reverse process also occurs, in which compounds evaporate as
the primary particles are diluted in an expanding smoke plume, as much as 80% of
POA mass may be lost during this phase (May et al. 2013, 2015). These competing
processes will be governed by the temperature and concentration in the plume as
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it is transported away from the fire. Finally, particles can increase in size through
collisions (accumulation mode), growing from a peak count median diameter of
~110 nm at the point of emission to ~250 nm downwind (Janhall et al. 2010). Thus,
the size class distribution of particles in an evolving smoke plume is dynamic over
seconds to hours after combustion.

Organic gases can be oxidized photochemically or by O3 as it ages. Oxidation
of NMOGs generates SOA. Enhancements of SOA production by up to a factor
of two have been observed from burning source materials with different NMOG
emissions. A detailed study of the chemistry of particles emitted from laboratory
burns of forest and shrubland fuels from the western USA found that 20–65% of the
particle emissions (by mass) could be categorized into 12 chemical classes, with the
majority of identifiable species being sugars, organic N compounds, and aliphatic
or oxy-aliphatic species (Jen et al. 2019). The fraction of emissions that could be
classified differed considerably among fuels; decayed logs emitted fewer identifiable
substances (~10% classified) than fresher fuels. EFs were approximately log-linear
with MCE for both total mass and some of the chemical classes, with log(EF) = – a
* MCE + b.

5.2.2.2 Gas Emissions

EFs for the 20 most abundant gases (excluding CO2, CO, and CH4) measured in
laboratory studies burning common US fuels are shown in Fig. 5.4. The largest EFs
for all fuel types are low molecular weight and/or oxygenated species. The NMOGs
with the largest EFs common to all fuel types are formaldehyde (HCHO), ethene
(C2H4), acetic acid (CH3COOH), and methanol (CH3OH). The majority of gases
emitted are NMOGs with EFs that span >4 orders of magnitude (Yokelson et al.
2013; Koss et al. 2018). The relative magnitude of the NMOGs emitted differs across
fuels. Based on laboratory data, southwestern shrubs (e.g., chaparral and mesquite
[Prosopis spp.]) have the lowest total NMOG emissions (~9 g kg−1), western forest
fuels have the highest (~29 g kg−1), and southeastern pine understory fuels have an
intermediate value (19 g kg−1) (Yokelson et al. 2013; Koss et al. 2018).

The observed NMOGs can be sorted into structural categories: aromatics
(benzene-type compounds), oxygenated aromatics, terpenes, furans, aliphatic hydro-
carbons, oxygenated aliphatic hydrocarbons, and compounds containing nitrogen
or sulfur. Non-aromatic oxygenated compounds and furans comprise the largest
portions of NMOGs (by EF) for western forests, chaparral, and wire grass (Aristida
stricta) (Fig. 5.5). Terpenoids, a highly reactive class of compounds thought to be
important SOA precursors (Chap. 6), are produced and stored in plant resins and can
be released when resinous vegetation is heated (Greenberg et al. 2006; Hatch et al.
2019). Because terpenoid emissions result from distillation rather than combustion,
they depend strongly on vegetation type (Greenberg et al. 2006; Hatch et al. 2019)
and comprise a much larger fraction of western forest fuel emissions compared with
non-forest fuels (Fig. 5.5). Total EFNMOGof forest fuels far exceeds that of the non-
forest fuels. This stems from a combination of burning conditions and fuel properties.
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Fig. 5.4 Emission factors (EFs) for the 20 most abundant gas emissions (excluding CO2, CO, and
CH4) from common US fuel types as reported in laboratory studies (Burling et al. 2010; Gilman
et al. 2015; Koss et al. 2018; Selimovic et al. 2018). Panel: a western conifer forest, b southeastern
forest, c chaparral
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Fig. 5.4 (continued)

The rank in total EFNMOG (western forest > chaparral > wire grass) (Fig. 5.5) is
partly a function of burning condition as represented by the MCE of 0.921, 0.955,
and 0.971 for western forest, chaparral, and wire grass, respectively.

Photochemical processing of NMOG emissions in the atmosphere can lead to O3

and SOA formation (see Chap. 6). Quantifying NMOG reactivity with OH identifies
which emissions may have the greatest potential to form these secondary pollutants.
The variability in OH reactivity of emissions from different fuel types can be consid-
erable due to large differences in the magnitude and relative composition of NMOG
emissions. TheOH reactivity of NMOGemissions fromwestern forest fuels (~90 s−1

[ppb CO]−1) is nearly three times that of chaparral fuels (~30 s−1 (ppb CO)−1), with
the reactivity of southeastern understory forest fuels having an intermediate value
(Gilman et al. 2015; Koss et al. 2018).

In experiments employing airborne sampling platforms, over 90 gases have been
measured in fresh smoke from montane and boreal wildfires and US prescribed
fires (Box 5.3). However, emissions have been measured using advanced chemical
analysis techniques for relatively fewwildfires. There are only three such EF datasets
based on in situ airborne measurements in US and Canadian fires (Simpson et al.
2011; Akagi et al. 2013; Liu et al. 2017). Prescribed fire emissions have been more
thoroughly studied, in part due to relative ease of logistics and the concerns of land
management agencies regarding prescribed burn impacts on air quality.
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Fig. 5.5 Laboratory-measured non-methane organic gas emission factors (EFs) aggregated by
structural class for a western forest fuels, b chaparral, and c wire grass. Based on data from Hatch
et al. (2015) and Koss et al. (2018)
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Box 5.3 Locations of Airborne Smoke Plume Sampling
Four contemporary peer-review studies have reported detailed NMOG anal-
ysis of smoke plumes sampled from airborne platforms: Burling et al. (2011),
Simpson et al. (2011), Akagi et al. (2013), and Liu et al. (2017). The most
frequently sampled fire types are understory prescribed fires in southeastern
forests (n = 13).

NMOGs for which EFs have been measured in the field comprise 36–58% (by
mass) of totalNMOGemissions quantified in laboratory studies (Simpson et al. 2011;
Yokelson et al. 2013; Liu et al. 2017; Koss et al. 2018). EFs for select compounds
measured for prescribed fires in three different fuel types (chaparral, southeastern
forest, and western conifer forest) and western wildfires are plotted versus MCE in
Fig. 5.6. There is high variability within and across fire types for these chemical
species, which are among the most abundant emitted by fires. Large fuel-type differ-
ences in NMOG EFs observed in laboratory studies are less pronounced in field
data, presumably due to the small sample size and large natural variability in fuels
and fire behavior which tend to homogenize the emissions at the point and time of
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Fig. 5.6 Emission factors (EFs) for select compounds versus modified combustion efficiency
(MCE). Data are from airborne measurements of prescribed fires in chaparral [RxCH; Burling et al.
(2011)], southeastern conifer forest [RxSE; Akagi et al. (2013)], western conifer forest [RxMF;
Burling et al. (2011)], and western wildfires [WF; Liu et al. (2017)]. EF for particulate matter data
for prescribed fires is fromMay et al. (2014). Horizontal and vertical bars are one standard deviation

measurement (Fig. 5.6). The EFs in Fig. 5.6 tend to group according to MCE which
is consistent with laboratory findings (see Figs. 5.2 and 5.3).

5.2.2.3 Emissions from Residual Smoldering Combustion

Long-term smoldering combustion that is not influenced by fire-related convection
sufficient to loft the smoke above the surface layer is referred to as residual smol-
dering combustion (RSC;Wade and Lunsford 1989). RSC includes glowing combus-
tion, which is strong smoldering that produces high local temperatures (Santoso
et al. 2019) and often does not produce visible smoke. RSC emissions are generated
from logs, stumps, duff, and organic soils which are prone to sustained smoldering
combustion. Following ignition during flame-front passage, these fuel components
can smolder for hours to days (Ottmar 2018). Replicating RSC in the laboratory is
challenging for these fuel components, and limited data are available.

Two field studies of prescribed fires in North Carolina and South Carolina pine
understories augmented airbornemeasurements with ground-based sampling of RSC
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emissions. These studies found EFs of gases associatedwith smoldering combustion;
CO, CH4, and many NMOGs were much higher for RSC than those measured from
airborne platforms (Burling et al. 2011; Akagi et al. 2013). Akagi et al. (2013)
measured over 90 NMOGs from airborne and ground-based platforms for three
prescribed fires in South Carolina pine understory. They found EFNMOG for RSC
(34.18 ± 20.40 g kg−1) was more than twice that measured in the lofted plume
(14.56± 0.72 g kg−1), with differences between RSC and lofted plume EFs for indi-
vidual NMOGs being highly variable. Emissions of NOX, which result from flaming
combustion, were negligible from RSC (Burling et al. 2011; Akagi et al. 2013).

Organic soils (peat) and duff burn predominantly by smoldering combustion
(Chap. 2), which can persist for days. When wildfires occur in landscapes with
deep organic soil layers, such as in the southeast USA and northern boreal ecosys-
tems, smoke production can continue for weeks after fire spread is contained and
produce vast quantities of pollutants (Ottmar 2018). Limited field measurements of
PM emissions from smoldering organic soil (North Carolina coastal plain) found
EFPM2.5 ≥ 40 g kg−1 (Geron and Hays 2013). This is more than twice the EFPM2.5

observed for the burning of southeastern understory forest fuels with ground-based
measurements (Geron and Hays 2013; Urbanski 2014) and considerably larger than
EFPM1 measured from aircraft (May et al. 2014) (Fig. 5.6). In situ measurements of
gaseous emissions fromRSC showEFCO= 200–300 g kg−1 and EFVOC~40 g kg−1

(VOC = NMOG + CH4) (Hao and Babbit 2007; Geron and Hays 2013).
Interpretation and application of RSC EFs are challenging due to the uncertain

representativeness and potential sampling biases associatedwithRSCmeasurements.
A limited comparison of EFs measured for smoldering fuel components and for
drift smoke along burn-unit perimeters indicates smoldering, and possibly scattered
flaming combustion of other fuel types (e.g., litter and shrubs), may contribute to
unlofted emissions (Akagi et al. 2014). Thus, using only EFs based on RSC-prone
fuel components may not give an accurate depiction of unit-level emissions, fire-
fighter exposure, or local smoke impacts. Given the scarcity of RSC measurements,
extrapolation of data from Geron and Hays (2013) to other ecosystems is needed. In
addition, because comprehensive field measurements of EFs for smoldering organic
soil and peat are even more limited, laboratory-measured EFs must currently be
relied upon to estimate emissions for fires involving these fuel types and associated
combustion characteristics.

5.2.3 Emission Calculations

Quantifying EFs of wildland fires is only the starting point for characterizing emis-
sions. Decision support activities (e.g., forecasting smoke impacts) and research
(e.g., climate forcing of aerosols) require mass flux estimates (kg m−2 s−1) of pollu-
tants released into the atmosphere by wildland fires. Here, we refer to the mass
flux of pollutant X as “emissions of X” (EX ) which can be calculated bottom-up
or top-down. Bottom-up calculations are based on surface data (fuel loading and
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burned area), whereas top-down methods calculate emissions using observations of
fire energetics, independent of fuel loading and burned area.

5.2.3.1 Emission Calculations: Bottom-Up Methods

In simplified form, bottom-up emission calculations may be described with Eq. 5.3:

EX = A × F × C × EFX (5.3)

where the mass flux of species X, EX (kg-X m−2 s−1) is the product of area burned
(A, m2), fuel loading (F, kg-fuel m−2), combustion completeness (C), and EFX (kg-X
kg-fuel−1). In practice, this calculation involves several components (Ottmar 2018):
(1) fire activity, (2) fuel characteristics, (3) fuel consumption, (4) emission factors,
(5) temporal allocation of emissions, (6) vertical allocation of emissions, and (7) the
atmosphere (Fig. 5.7).

First, fire activity information is necessary—when and where a fire occurred, and
size of the area burned. Availability of fire activity data is constrained by the intended
use of the emissions. Smoke forecasting requires rapid data accessibility for recent
fire activity (e.g., previous 24 h) as well as predictions of fire activity and resultant
emissions for the forecast period (typically 24–48 h). In contrast, research activities
can usually use emissions calculated a long period time after the actual fire activity,
allowing access to post-fire data products.

Fire activity data collected as part of fire management activities are often avail-
able with a timeliness suitable for smoke forecasting. These data include incident
management reports for wildfires and burn permit records and agency reporting for
prescribed fires. This reporting provides fire location and size, and may include size
increase since last report. Prescribed fire data differ widely depending on the agency,
jurisdictional reporting requirements, and landownership.During largewildfire oper-
ations, fire perimeter data are commonly obtained from airborne mapping, usually
via infrared-based instruments. For both prescribed fire and wildfire, fire size is not
necessarily equivalent to the actual area burned. Meddens et al. (2016) determined
that approximately 20 percent of the area within a wildfire perimeter was unburned.

Satellite detection of active fires (“hotspots”) can provide a large-scale (regional to
continental) view of fire activity (Chuvieco et al. 2019a). Satellite fire detection data
in the USA and Canada have variable spatial and temporal resolution. The MODIS
and VIIRS instruments on polar-orbiting satellites provide data with a nadir (surface
point centered directly below the satellite) pixel size of 375 m to 1 km, and a return
time of 12 h per satellite. The latest generation National Oceanic and Atmospheric
Administration’sGeostationaryOperational Environmental Satellites (GOES-16 and
GOES-17) provide fire detection data with a frequency of 5–15 min and nadir pixel
resolution of 2 km. Although widely used, these data have limitations. Clouds, forest
canopy cover, and low fire intensity can inhibit satellite fire detection. The data do
not provide actual fire size, since detectability depends on many factors including
fire intensity (Schroeder et al. 2014; Szpakowski and Jensen 2019).
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Fig. 5.7 Components in calculating emissions from wildland fire
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Emission calculations used in retrospective analyses can leverage fire activity data
not available for real-time smoke forecasting. For example, burned area products
derived from satellite time series of MODIS and LANDSAT observations (Chuvieco
et al. 2019a, b) provide robust burned area mapping. The relaxed time requirements
of retrospective analyses also enable use of detailed, vetted databases constructed
from multi-agency fire reports such as the Fire Occurrence Database (Short et al.
2020). Combining disparate data sources on fire activity in a consistent dataset opti-
mized for emission calculations is challenging. Tools and efforts described in the
Comprehensive Fire Information Reconciled Emissions (CFIRE) Inventory (Larkin
et al. 2020) addressed these issues in an attempt to develop a cohesive dataset of fire
activity information for a region and time period.

Once a fire is located and its size is estimated, vegetation information is required to
infer fuel loading data. Vegetation types, such as Douglas fir (Pseudotsugamenziesii)
forest or sagebrush (Artemisia spp.) shrubland, can be obtained from national-scale
mapped datasets such the Fuel Characteristic Classification System (FCCS; Prichard
et al. 2013) or on a site-specific basis (Wright et al. 2010b). Fuel classification systems
associate vegetation types with an estimate of fuel loading by stratum (duff, litter,
woody fuels, etc.). These datasets typically represent the mean for vegetation types
whose fuel loading may in reality vary greatly. The high variability of fuel loading
is one of the largest contributors of uncertainty in wildland fire emission estimates
(Larkin et al. 2014; Chap. 2).

Once burned area and fuel loading are obtained, information on the fraction of fuel
consumed across the different fuel strata (combustion completeness) is needed. Fuel
consumption (Chaps. 2 and 3) is determined by the combustion process, consisting
of four phases: (1) preignition involving distillation and pyrolysis, leading to (2)
flaming, (3) smoldering, and (4) glowing (char oxidation) combustion. Fuel proper-
ties (type, moisture content, and arrangement), environmental conditions (e.g., wind
speed and terrain), and ignition method in the case of prescribed fires can affect
the amount of biomass consumed during various combustion stages. CONSUME
(Prichard et al. 2014), FOFEM (Lutes 2019), and Pile Calculator (Wright et al.
2010a) are three widely used fuel consumption models.

The composition and relative abundance of emission species produced during
fuel consumption are a function of fuel type, combustion process, and atmospheric
interactions. The role of these complex processes in determining EFs is discussed in
Sect. 5.2.2.

Finally, emissions must be allocated temporally and vertically in the atmosphere.
For prescribed fires, temporal allocation of emissions is often conducted using the
Fire Emissions Production Simulator (FEPS; Anderson et al. 2004), where soon after
ignition, a large spike in flaming emission occurs which then decays exponentially
until 6 pm local time, at which time all flaming emissions end and smoldering emis-
sions continue through the evening (Ferguson and Hardy 1994). For wildfires, time
profiles based on diurnal cycles derived from a fusion of fire activity observations
from geostationary and polar-orbiting satellites (Mu et al. 2011, Li et al. 2019a, b) or
from the work of the Western Region Air Partnership (WRAP) are typically applied.
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Future work with fire detection data from the GOES-16 and GOES-17 satellites is
anticipated to improve temporal profiles for large wildfires.

The vertical distribution of emissions in the atmosphere depends on smoke plume
dynamics (Chap. 4). Heat released from the fire is estimated from the consumption
model and is often used to estimate the maximum height in the atmosphere under
which emissions are distributed, known as plume rise. A Briggs (1976) approach
has been historically used in systems such as BlueSky (Larkin et al. 2009). Other
plume modeling methods have been used for emissions and smoke modeling (e.g.,
DAYSMOKE; Achtemeier et al. 2011; Chap. 4).

Concurrent with plume rise is how emissions are distributed underneath the plume
top. Typically, smoldering emissions are allocated to the lowest level of the atmo-
spheric model (near the surface). Flaming emissions are usually distributed evenly
(vertically) through the atmosphere beneath the nominal plume-rise height. How
plume-rise height interacts with mixing height, as well as quantity of flaming versus
smoldering emissions, has implications for the quantity of emissions retained near
the surface versus lofted and transported long distances.

5.2.3.2 Emission Calculations: Top-Down Methods

Bottom-up emission approaches combine fuel loading maps with estimates of area
burned and fuel consumption to derive biomass burned, to which EFs are applied
to calculate pollutant emissions (Fig. 5.7; Eq. 5.3). Fuel consumption, the product
of fuel loading and combustion completeness, is the largest source of uncertainty in
bottom-up emission calculations (French et al. 2011; Urbanski et al. 2011; Leeuwen
et al. 2014). Top-down emission methods use satellite observations of fire radiative
power (FRP), a measure of the radiant energy release rate from burning vegetation, to
estimate fuel consumption, circumventing the need to explicitly consider fuel loading
and combustion completeness.

FRP is one of the parameters provided in the active fire products derived from
observations of the MODIS and VIIRS sensors (and other satellite-based sensors)
(Wooster et al. 2003; Zhang et al. 2017). FRP is based on the fire pixel temperature
observed in mid-wavelength infrared, typically around 4 µm (3.96 µm for MODIS)
(Wooster et al. 2003). Laboratory and field experiments have shown that (1) FRP
is linearly related to the vegetation combustion rate, and (2) fire radiative energy
(FRE) (time-integrated FRP) is linearly related to the mass of vegetation combusted
(Wooster et al. 2005; Freeborn et al. 2008; Hudak et al. 2016). Most top-down
approaches estimate emissions by combining fuel consumption inferred from FRE
with biome/land cover-specific EFs (Kaiser et al. 2012; Zhang et al. 2012). A vari-
ation of this approach used estimates of atmospheric column PM loading (derived
fromMODIS aerosol optical depth) to develop land cover-specific PMemission coef-
ficients (kg-PM MJ−1) for predicting PM emissions directly from FRE (kg MJ−1)
(Ichoku and Ellison 2014).

Top-down emission inventories typically use FRP retrievals from the MODIS
and VIIRS sensors which are on polar-orbiting satellites. In addition to providing
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Table 5.1 Databases, syntheses, and reviews for emission factors (in order of last update)

Emission factor dataset References Availability Last update

Smoke Emissions
Repository Application

Prichard et al. (2020) https://depts.washington.edu/
nwfire/sera

2019

Andreae biomass burning
emission factors

Andreae (2019) https://doi.org/10.17617/3.26 2019

Urbanski Urbanski (2014) https://www.fs.usda.gov/tre
esearch/pubs/45727

2014

Wildland fire emissions
factors database

Lincoln et al. (2014) https://www.fs.usda.gov/rds/
archive/catalog/RDS-2014-
0012

2014

Akagi et al. Akagi et al. (2011) http://bai.acom.ucar.edu/
Data/fire/

2011

USEPA AP-42 USEPA (1996) https://www3.epa.gov/ttn/
chief/ap42/ch13/index.html

1996

global coverage, these sensors offer a higher spatial resolution (nominal resolution
at nadir of 1 km for MODIS and 750 m/375 m for VIIRS) than sensors on geosta-
tionary orbiting satellites (e.g., GOES-11/13/15) (nominal 4 km at nadir). However,
polar-orbiting satellites offer limited temporal coverage (two observations a day per
satellite) compared with geostationary satellites. For example, the GOES imagers
provide observations every 5–15 min across the contiguous USA.

Since FRP is an instantaneous indicator of heat flux and does not provide infor-
mation on fire evolution, the sparse temporal coverage of polar-orbiting satellites is
a major limitation of the top-down emission approach. Recent efforts to combine
FRP data from polar-orbiting satellites (MODIS/VIIRS) and higher temporal resolu-
tion GOES fire products are promising for providing improved spatiotemporal FRP
coverage (Li et al. 2019a, b). Application of this approach to the new generation
of GOES imagers (GOES-16/17), which have improved spatial resolution (nominal
2 km at nadir for fire products), may be an effective emission inventory method.

5.3 Existing Data, Tools, Models, and Other Technology

5.3.1 Emission Factors

Publicly available EF syntheses and databases are listed in Table 5.1. Andreae (2019)
and Akagi (2011) support global emission modeling and provide EFs for broad fire
types such as “temperate forest” and “peat fires,” as well as other biomass sources
(e.g., biofuel use and trash burning). Urbanski (2014) uses more specific fire clas-
sifications, designed for US and Canadian fires, such as “prescribed fire southeast
conifer forest” and residual smoldering of “stumps and logs.”

https://depts.washington.edu/nwfire/sera
https://doi.org/10.17617/3.26
https://www.fs.usda.gov/treesearch/pubs/45727
https://www.fs.usda.gov/rds/archive/catalog/RDS-2014-0012
http://bai.acom.ucar.edu/Data/fire/
https://www3.epa.gov/ttn/chief/ap42/ch13/index.html
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The Smoke Emission Reference Application (SERA) is an online database that
allows users to explore and summarize an extensive repository of EFs for smoke
management and emission inventory activities (Prichard et al. 2020). The Lincoln
et al. (2014) database compiles EFs from a large body of field and laboratory studies.
The SERA and Lincoln et al. databases do not synthesize data to derive “best esti-
mate” EFs. Chapter 13 of “Compilation of Air Pollutant Emissions Factors” (AP-42)
(USEPA 1996) provides recommended EFs for a limited number of pollutants for
US fire types and was published prior to the advances achieved in the past 15 years
in characterizing emissions of wildland fires.

5.3.2 Emission Inventories

An emission inventory is a compilation of data that lists, by source, the amount
of air pollutants released into the atmosphere in a defined geographic area during
a specific time period. Table 5.2 provides nine wildland fire emission inventories
that cover the contiguous USA (CONUS). The domain and temporal coverage differ
among the inventories.A number of inventories (GFED, FiNN,QFED,GFAS, FEER,
and GBBPx) are global in coverage, and others focus on the USA (WFEIS, MFLEI,
and NEI) (Table 5.2). Although the spatial resolution of the inventories uses different
metrics (500 m to 0.25°), all provide emissions with a 1-day temporal resolution.
Many atmosphericmodel applications, whether operational forecasts or retrospective
analyses, require hourly emissions. High temporal frequency observations of fire
activity from geostationary satellites have proven useful for deriving hourly emission
profiles from daily estimates (Mu et al. 2011; Li et al. 2018).

Several inventories (FiNN, QFED, GFAS, FEER, and GBBPx) calculate emis-
sions in near-real time for use in atmospheric chemistry forecasting. FiNN andQFED
are used in the Whole Atmosphere Community Climate Model (https://www.acom.
ucar.edu/waccm/forecast). GFAS is used in Copernicus Atmosphere Monitoring
Service (https://atmosphere.copernicus.eu/global-forecast-plots), andGBBEPx is an
operational product currently being used by the NGAC v2 aerosol model at the
National Center for Environmental Prediction. GFED,WFEIS, MFLEI, and NEI are
all retrospective inventories that estimate emissions with a time lag of one to three
years. Retrospective inventories have the potential to providemore accurate emission
estimates than their real-time counterparts as they can leverage burned area and burn
severity geospatial data products that are not available in real time (Urbanski et al.
2018).

Different inventories include different pollutant species. For example, FiNN emis-
sions are speciated for three different atmospheric chemistry model mechanisms;
MFLEI provides fuel consumption and emissions of CO2, CO, CH4, and PM2.5;
GFED offers fuel consumption according to fire type, with recommended EFs for
over 20 species. Most of the inventories include fuel consumption which can be
used to calculate emissions for any species for which EFs are available; this requires
information or assumptions regarding fire type and vegetation burned.

https://www.acom.ucar.edu/waccm/forecast
https://atmosphere.copernicus.eu/global-forecast-plots


5 Emissions 143

Table 5.2 Emission inventories

Inventory Domain �X �t Active Access

Bottom-up emission calculations

Global Fire
Emissions
Database (GFED)

Global 0.25° 1 day to 1 month Yes https://www.globalfir
edata.org/

Wildland Fire
Emissions
Information
System (WFEIS)

USA 1 km 1 day No https://wfeis.mtri.org/

Fire Inventory from
NCAR (FiNN)

Global 1 km 1 day Yes https://www2.acom.
ucar.edu/modeling/
finn-fire-inventory-
ncar

Missoula Fire Lab
Emission Inventory
(MFLEI)

CONUS 500 m 1 day Yes https://www.fs.usda.
gov/rds/archive/cat
alog/RDS-2017-0039

National Emission
Inventory (NEI)

USA Variable 1 day Yes https://www.epa.gov/
air-emissions-invent
ories/national-emissi
ons-inventory-nei

Top-down emission calculations

Global Fire
Assimilation
System (GFAS)

Global 0.1° 1 day Yes https://atmosphere.
copernicus.eu/global-
fire-emissions

Quick Fire
Emission Dataset
v2.4 (QFED)

Global 0.1° 1 day Yes https://www.acom.
ucar.edu/waccm/reg
ister.shtml

Fire Energetics and
Emissions
Research v1
(FEER)

Global 0.1° 1 day Yes https://feer.gsfc.nasa.
gov/projects/emissi
ons/

Blended Global
Biomass Burning
Emissions Product
(GBBEPx V3)

Global 0.1° 1 h Yes https://www.ospo.
noaa.gov/Products/
land/gbbepx/

5.3.2.1 Emission Estimates for CONUS, Canada, and Alaska

A map of annual average PM2.5 emissions from 2003 to 2018 estimated by GFED
(Werf et al. 2017) is shown in Fig. 5.8. Emission hotspots are concentrated in the
boreal regions and, to a lesser extent, in the western USA and southern British
Columbia. An emission hotspot is also present on the Georgia–Florida border owing
to a series of intense fires in the Okefenokee Swamp region. GFED annual sums
of PM2.5 emissions for CONUS and Alaska/Canada for 2003–2018 are shown in
Fig. 5.9. TheGFED-estimated annual PM2.5 emissions forAlaska andCanada exceed

https://www.globalfiredata.org/
https://wfeis.mtri.org/
https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar
https://www.fs.usda.gov/rds/archive/catalog/RDS-2017-0039
https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei
https://atmosphere.copernicus.eu/global-fire-emissions
https://www.acom.ucar.edu/waccm/register.shtml
https://feer.gsfc.nasa.gov/projects/emissions/
https://www.ospo.noaa.gov/Products/land/gbbepx/
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Fig. 5.8 Annual average PM2.5 emissions for 2003–2018. Based on data from the global fire
emissions database (Werf et al. 2017)

those of CONUS by a factor of 2–20, depending on the year. Interannual variability
in emissions is similar for the two regions, with coefficients of variation near 0.5.

Monthly average GFED PM2.5 emissions are shown in Fig. 5.10. Across the
northern tier, emissions are concentrated in the summer months (90% between June
and August). CONUS emissions are spread more broadly across the year, with the
peak three months (July–September) accounting for 60% of the annual total. Putting
the magnitude of emissions into context, Fig. 5.11 plots summer emissions (July–
September) for the western 11 CONUS states with PM2.5 emissions from non-fire
sources as estimated from the EPA2014NEI v2. During the heart of thewesternUSA
wildfire season, GFED-estimated PM2.5 emissions regularly exceeded anthropogenic
sources by a factor of 2–4 during severe fire years (2007, 2012, 2017, 2018).

Annual magnitude, seasonality, and spatial distribution of fire emission across
the USA and Canada are summarized in Figs. 5.8, 5.9, 5.10 and 5.11. There is
uncertainty in emission inventories, especially at spatiotemporal scales relevant for
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Fig. 5.9 Annual sums of PM2.5 emissions for 2003–2018 for Alaska/Canada (top panel) and the
CONUS (bottom panel). From the global fire emissions database

understanding and predicting smoke impacts. PM2.5 emissions based on four inven-
tories are shown in Fig. 5.12: PM2.5 emissions range from80 to 230%of the ensemble
mean. Different data and methods—burned area, fuel-type classification maps, fuel
loading and consumption, and EFs—all contribute to this variability.
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Fig. 5.10 Monthly average PM2.5 emissions for 2003–2018 for Alaska/Canada (top panel) and
CONUS (bottom panel). From the global fire emissions database

5.3.3 Emission Models for Land Management

Prescribed fire is used tomaintain and restore ecosystem function and health andmiti-
gate wildfire risk through reduction of hazardous fuel. Smoke impacts are an impor-
tant consideration for prescribed burning, and effective smokemanagement strategies
are generally required for successful use of prescribed fire. Emission reduction tech-
niques (ERTs) are central to the basic smoke management practices recommended
by the National Wildfire Coordination Group (Peterson et al. 2018). ERTs take into
consideration area burned, fuel load, fuel produced, amount of fuel consumed, and
combustion efficiency. Smoke emission models designed for land managers and
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Fig. 5.11 Summer (July–September) PM2.5 emissions for the western 11 CONUS states (bars) and
PM2.5 emissions from non-fire sources as estimated from the USEPA 2014 NEI v2 [solid horizontal
line; USEPA (2014)]

prescribed fire practitioners are important tools for implementingERTs. Smoke emis-
sion models commonly used for planning of prescribed fires in the USA (Table 5.3)
predict emissions based on fuel loading, fuel moisture, and environmental factors.

A number of models are available for managers to use in prescribed fire planning.
The First Order Fire Effects Model (FOFEM) predicts the immediate consequences
of wildland fire, including fuel consumption, smoke production, soil heating, and tree
mortality. CONSUME is a module within BlueSky, WFEIS, and the Fuel and Fire
Tools (FFT) suite that predicts total fuel consumption, emissions, and heat release.
FEPS predicts hourly emissions, heat release, and plume-rise values for wildland
fires; can import consumption and emission data from CONSUME and FOFEM;
and is included in FFT. The software application FFT integrates CONSUME and
FEPS with fuel data from the FCCS and Digital Photo Series (Chap. 2) into a single
user interface (Ottmar 2014). BlueSkyPlayground (Larkin 2018) provides interactive
access to severalmodels enabled by theBlueSky Framework and allows users to enter
basic fire information to simulate fuel consumption and pollutant emissions, as well
as model plume rise and smoke dispersion.

5.4 Gaps in Data, Understanding, and Tools/Technology

5.4.1 Emission Factors for Wildfires

Thepaucity ofEFmeasurements forwildfires is a significant gap in our understanding
of emissions. With the exception of prescribed fires in southeastern US forests, most
fire types have received limited field investigation. The small number of wildfires
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Fig. 5.12 PM2.5 emissions based on four different inventories: GFED, FiNN, MFLEI, andWFEIS
for three regions and time periods: CONUS-wide—annual (top), northwestUSA—August (middle),
and southeast USA—March (bottom)
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Table 5.3 Emission models for land management

Model Availability References

FOFEM https://www.firelab.org/document/fofem-files/ Lutes (2019)

CONSUME https://www.fs.fed.us/pnw/fera/research/smoke/
consume

Prichard et al. (2020)

FEPS https://www.fs.fed.us/pnw/fera/feps Anderson et al. (2004)

FFT https://www.fs.fed.us/pnw/fera/fft Ottmar (2014)

BlueSky Playground https://tools.airfire.org/playground Larkin (2018)

that have been sampled with detailed chemical speciation does not capture the wide
range of fuels and burning conditions that occur across the USA and Canada.

EFs have not beenmeasured fromwildfires for most NMOGs known to be present
in fresh smoke (based on laboratory studies). Borealwildfire EFs for themost reactive
compounds, which include nearly half the NMOG mass reported, are based on a
single fire (Simpson et al. 2011). Similarly, NMOG EFs for western US wildfires
are limited to only three fires and may not capture the range of wildfire emissions
(Liu et al. 2017). Field studies that did not measure EFs for PM and NMOGs report
an MCE range of 0.83–0.95 for 29 western USA and boreal wildfires (Hornbrook
et al. 2011; O’Shea et al. 2013; Urbanski 2013). Because EFs for many species are
correlated with MCE, the actual range of EFNMOG and EFPM for wildfires may
be considerably broader than suggested by Liu et al. and Simpson et al., so applying
these data to wildfires may introduce uncertainty in emission estimates.

5.4.2 Connecting Laboratory Studies with Field Observations

Comprehensive emission estimates across the spectrum of relevant fire activity
require extrapolating laboratory-measured EFs to real fire conditions. EF extrap-
olation methods include (e.g., Selimovic et al. 2018; Sekimoto et al. 2018):

• Regression of EF versus MCE to extrapolate field MCE
• Average EF of laboratory burns according to fuels type
• Coupling of laboratory �X/�CO with field EFCO to derive EFX at field

conditions
• Pyrolysis profiles based on high- and low-temperature regimes.

These methods may also be used to extrapolate field-measured EFs to fires
in different fuel types and burning conditions. A combination of the first three
approaches has been used in developing global and regional EF databases that are
widely used in emission models and inventories (Akagi et al. 2011; Urbanski 2014;
Andreae 2019). However, an extensive evaluation of laboratory-extrapolated EFs
has not been published, perhaps due to lack of field data. In a limited evaluation,
Sekimoto et al. (2018) found that EFs estimated using high- and low-temperature

https://www.firelab.org/document/fofem-files/
https://www.fs.fed.us/pnw/fera/research/smoke/consume
https://www.fs.fed.us/pnw/fera/feps
https://www.fs.fed.us/pnw/fera/fft
https://tools.airfire.org/playground
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pyrolysis profiles analyzed with positive matrix factorization can reproduce NMOG
EFs from previous field and laboratory burns with reasonable fidelity (r ≥ 0.92).
Additional field data, especially for wildfires, are needed to support a comprehensive
evaluation of EF extrapolation methods.

5.4.3 Variability of EFs with Combustion Conditions

Long-term smoldering can result in sustained periods of poor air quality, exacerbation
of health conditions among vulnerable residents, and dangerous road conditions due
to reduced visibility (Chap. 7). Smoldering that persists into nighttime hours when
winds tend to be light and variable, reducing dispersion, can be especially challenging
when the shallow nocturnal boundary layer reduces the volume into which smoke is
emitted. Nighttime subsidence drainage flows can transport smoke long distances,
pooling it in valleys or low-lying areas.

Applying fuel treatments on landscapes with fuels prone to smoldering, while
minimizing local smoke impacts, requires models that provide reliable temporal
profiles of fuel consumption and pollutant emissions. FOFEM and FEPS are widely
used to predict fuel consumption and smoke production (Ottmar 2018). However, the
ability of thesemodels to simulate fuel consumption rates for smoldering combustion
has not been rigorously evaluated. In addition, the models predict temporal emission
profiles using static smoldering-phase EFs.

Consumption and emission rates during long-term smoldering can differ
depending on the fuel component (log, stump, basal accumulation, etc.) and fuel
condition (Ottmar 2018). Likewise, EFs differ with fuel component type and smol-
dering characteristics (Hao andBabbit et al. 2007; Reisen et al. 2018). The absence of
validated models to predict emission rates from long-term smoldering is a significant
obstacle to using prescribed fire.

5.4.4 Validation of Emission Inventories

There are large discrepancies among the various CONUS emission inventories. In
a recent study, CONUS-wide average monthly PM2.5 emissions estimated by seven
inventories, over four years, ranged from 28.2 to 485.6 Gg, with a coefficient of
variation of 109% (Li et al. 2019a, b). Comparisons limited to retrospective emission
inventories find large differences at fairly coarse scales (Larkin et al. 2014; Koplitz
et al. 2018) and increasing variability with decreasing spatiotemporal scale (French
et al. 2011; Urbanski et al. 2011).

Improving our ability to forecast smoke events and understand smoke impacts
within the USA requires developing and applying thorough validation methods for
emission inventories at the fire-event level. Over 10 emission inventories (near-real
time and retrospective) include the CONUS, and several comparisons are found in
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the literature (e.g., Larkin et al. 2014; Koplitz et al. 2018; Urbanski et al. 2018; Li
et al. 2019a, b). However, none of the emission inventories has been methodically
evaluated using independent data at scales relevant for assessing wildfire smoke
impacts on air quality. Validationmethods link satellite observations of fire emissions
(e.g., aerosol optical depth, CO, NO2) to fire activity using atmospheric models and
meteorological analyses. Although these methods have been used in both forward
(Ichoku and Ellison 2014; Petrenko et al. 2017) and inverse (Dubovik et al. 2008;
Kopacz et al. 2010) modeling approaches to constrain fire emission inventories at
global to regional scales, they have not rigorously validated emission inventories at
the fire-event scale.

5.4.5 Forecasting Wildfire Emissions

The lack of reliable near-term (24 h) emission forecasts is a key obstacle to improving
forecasts of wildfire smoke impacts on air quality. The main challenge is accurately
predicting the growth of many active fires over the next burning period in a timely
manner that is compatible with regional-to-continental smoke forecasting systems.
Although several fire growth models exist, current operational smoke models use
daily persistence in burned area growth to forecast emissions. Daily persistence
assumes that the area burned by a given fire in the current day will be that fire’s
growth the following day. However, given available fuel and variable topography,
daily weather plays a major role in the growth of wildfires (Chap. 3).

The sensitivity of wildfire growth to weather is evident in retrospective emission
inventories that suggest that the majority of CONUS wildfire emissions occur on a
small fraction of days (~5%) (Urbanski et al. 2018). The daily persistence approach
will often greatly under-predict these high fire growth/high emission days, which
occur during severe fire weather conditions (e.g., Jolly et al. 2019), resulting in
a failure to forecast acute smoke episodes. The use of daily persistence can also
overestimate fire growth over periods following extreme fire weather days, leading
to an overprediction of smoke production. Improving the skill of smoke forecasts
will require developing and implementing new methods for predicting short-term
(24 h) fire growth and emissions.Methods based on forecastmeteorological variables
(temperature, relative humidity, wind speed) and fire weather indices have shown
promise for improving upon daily persistence in prediction of short-term fire activity
and smoke emissions (Peterson et al. 2013; Giuseppe et al. 2017).

5.4.6 Measuring and Modeling PM2.5

Inaccurate PM2.5 measurements introduce errors in emission models used for air
quality modeling and introduce uncertainty in the measurements used to validate
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these models. Inaccurate ambient PM2.5 measurements also may result in public
health guidance that is either overly restrictive or not adequately protective.

Due to the semi-volatile and reactive nature of smoke, PM2.5 concentration ratios
used to calculate EFs can differ depending upon the local conditions at which they are
measured. EFs are measured from fresh emissions before significant SOA formation,
or other reactions have occurred and altered the chemistry of the emissions. However,
at the high concentrations near the fire, the lower-volatility SVOCs will partition to
the particle phase, leading to higher PM2.5 concentrations than under more dilute
conditions (Robinson et al. 2010). These volatility effects may partially explain the
wide scatter observed in EFPM2.5 across studies (Jolleys et al. 2014;May et al. 2014)
and observations that EFPM2.5 can be almost twice as high near the fire compared
to downwind in a dilute plume (Holder et al. 2016).

The volatility distribution is one way to account for SVOC partitioning and is now
being employed in air quality models (Lu et al. 2020). Volatility distributions have
been shown to be relatively independent of fuel type and burning conditions (May
et al. 2013; Hatch et al. 2018) and can explain up to a 40% loss of PM with 100:1
dilution (Hatch et al. 2018). However, volatility measurements have been limited to
laboratory burns, and field measurements are still needed.

Ambient monitoring of smoke also has PM2.5 measurement challenges. Air
quality information during smoke events is generally derived from Federal Equiva-
lent Method (FEM) monitors that provide hourly measurements. FEMs are validated
against 24-h filter-based Federal ReferenceMeasurements (FRMs) at concentrations
of 3–200 µg m−3 to ensure broad comparability to FRM PM2.5 mass, which is the
basis for much of the PM2.5 health effect research (USEPA 2020). However, FEM
evaluations do not purposefully include smoke-impacted times and do not cover the
full range of PM2.5 concentrations corresponding to the air quality index range.

Research to identify and resolve FEMmonitor measurement accuracy for wildfire
smoke is needed. Several FEMs contain measurement artifacts, which may hinder
their use for assessing smoke impacts on air quality. Environmental beta attenuation
monitors (EBAMs, a near-FEM grade instrument) used in temporary monitoring
networks near fires are subject to a high bias at elevated relative humidity, and hourly
EBAMPM2.5 data at humidity above 40% should be used cautiously (Schweizer et al.
2016). Another FEM (Teledyne T640®) was found to report PM2.5 concentrations
40–100% higher than another FEM (MetOne 1020 BAM®), but only when the PM2.5

concentrations were elevated (Hassett-Sipple et al. 2020; Landis et al. 2021).
Sensor technologies are increasingly used to monitor wildfire smoke, and work is

needed to identify appropriate corrections for PM2.5 sensors and methods to ensure
high-quality data during extended smoky episodes. Although some PM2.5 sensor
measurements can report concentrations up to twice as high as nearby FEMs (Mehadi
et al. 2020; Holder et al. 2020; Landis et al. 2021), with correction some sensors have
been found to report PM2.5 with modest error (~20–30%) over a range of conditions
(Holder et al. 2020; Barkjohn et al. 2020) and are now displayed as part of the Sensor
Data Pilot on the AirNow Fire and Smoke Map (https://fire.airnow.gov).

https://fire.airnow.gov
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5.4.7 Emissions of Hazardous Air Pollutants

PM is the major constituent of smoke associated with adverse health effects;
however, numerous other hazardous air pollutants are also emitted from fires,
such as hydrogen cyanide (HCN), polycyclic aromatic hydrocarbons (PAHs), and
other organic compounds (e.g., formaldehyde). The contribution of these gas-phase
compounds to health effects is poorly known.O’Dell et al. (2020) identified formalde-
hyde as the largest gas-phase hazardous air pollutant contributing to cancer risk from
wildfire smoke. They also found that acrolein was the major contributor to acute
and chronic hazards of young wildfire smoke (<1 day old), whereas HCN was the
primary contributor to chronic hazard from aged wildfire smoke. Although O’Dell
et al. (2020) estimated that health impacts from gas-phase hazardous air pollutants
were small compared to PM, exposure to these pollutants may not be reduced by
common actions recommended to reduce smoke exposure (e.g., portable air cleaners
and N95 masks). More research is also needed on the impact of gas-phase hazardous
air pollutants near fires and human health.

Toxic metals have been measured at trace levels in biomass burning PM (Chen
et al. 2007; Alves et al. 2011; Hosseini et al. 2013). As other sources of toxic metal
emissions to the atmosphere have decreased through regulations, fires may now be
a sizable source of toxic metals to the atmosphere, and some compounds may be
the leading source of these emissions to the atmosphere (Reff et al. 2009). Lead is a
particular concern because it is a USEPA criteria air pollutant and regulated through
the National Ambient Air Quality Standards.

When fires occur in the wildland–urban interface, burning vehicles and structures
may emit toxic metals, because the “fuel” in this case may contain high concentra-
tions of these metals (see Sect. 5.4.8). In areas where there has been environmental
contamination (e.g., Superfund sites, firing ranges, areas downwind of point sources),
lead and other toxic metals deposited in the soil and vegetation can be remobilized as
PM, entrained ash, or soil particles (Kristensen and Taylor 2012; Odigie and Flegal
2014; Wu et al. 2017). Radionuclides were remobilized by fires in the Chernobyl
Exclusion Zone (Evangeliou and Eckhardt 2020) but had limited long range trans-
port, likely because most of the radionuclides in the fuel partition to ash (Hao et al.
2018).

The toxic metals in PM from wildland fires may be emitted from both the soil and
combustion of vegetation. The larger PM size fractions (2.5–10 µm) emitted from
fires are enriched in calcium, magnesium, iron, aluminum, and silicon, likely derived
from soil particles entrained in the fire plume (Echalar et al. 1995; Alves et al. 2010,
2011; Popovicheva et al. 2016). Several elements (boron, manganese, zinc, copper)
are micronutrients that play a vital role in vegetative physiological processes, and
some plant species can hyperaccumulate heavy metals (e.g., uptake of lead by the
Brassicaceae family (mustard family)) (Tangahu et al. 2011).

When present, the higher-volatility metals (e.g., zinc, lead, cadmium, mercury)
in vegetation or soils tend to partition to PM2.5, whereas the lower-volatility metals
(e.g., cobalt, nickel, chromium, vanadium) tend to partition to ash (Narodoslawsky
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Table 5.4 USEPA hazardous air pollutant metals in wildland fire smoke

Fire type Field/lab Sb Cd As Cr Co Pb Ni Hg Se References

(µg metal per g particle mass)

Western
conifer

Lab 6.5 2 23 39 2.5 Turn et al.
(1997)

Western
forest

Field 375 134 1102 78.3 Ward and
Hardy (1989)

Southeastern
forest

Field 180 29 87 97 Balachandran
et al. (2013)

Southeastern
forest

Field 1.9 1.5 1.2 Lee et al.
(2005)

Southwestern
shrub

Field 9.7 9.8 50 220 1.2 22 12 6.5 16 Chow et al.
(2004)

and Obernberger 1996). Metal volatility can also be affected by local combustion
conditions, such as an oxidizing atmosphere facilitating formation of low-volatility
metal oxides, and the presence of other compounds like chlorine that can result in
higher-volatility metal chlorides (Linak and Wendt 1993). Other compounds, such
as aluminosilicates, may also act as a sorbent for some metals, causing the metals to
partition to ash (Linak and Wendt 1993).

There are limited measurements of toxic metal emissions from wildland fires,
owing to the lack of real-time measurement methods and the difficulty of obtaining
sufficient sample mass for analysis. Table 5.4 provides a summary of field and labo-
ratory measurements of EFs of metals on the USEPA hazardous air pollutant list.
The metal contribution to PM mass can vary by one to three orders of magnitude,
possibly representing the variation of the metal content in the vegetation that was
burned. However, the large variation may be caused in part by analytical uncer-
tainties due to limited sample mass. Accurate emissions for these trace hazardous
air pollutants are still needed for many fuel types and regions. Measurements will
require large sample masses and sensitive analytical methods to measure EFs above
the detection limit.

5.4.8 Emissions from Structure Fires

Wildland fires that occur in the wildland–urban interface have the additional compli-
cation of potentially burning different fuels that release toxic emissions when
combusted. Research on toxicity of emissions from combustion of building mate-
rials and vehicles has shown that numerous toxic compounds are emitted, including
hydrogen cyanide, hydrogen fluoride, hydrochloric acid, isocyanates, polycyclic
aromatic hydrocarbons, dioxins, NMOGs (e.g., benzene, toluene, xylene, styrene,
formaldehyde), and metals (Austin et al. 2001; Lönnermark and Blomqvist 2006;
Fabian et al. 2010; Reisen 2011; Stec 2017; Fent et al. 2018). Structural firefighters
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use a self-contained breathing apparatus to exclude pollutant concentrations that are
immediately dangerous to life or health. However, wildland firefighters responding
to wildfires where structures are burned do not normally use self-contained breathing
apparatus andmay be exposed to high concentrations of toxic air pollutants (Chap. 7).

Several studies have quantified EFs for hazardous pollutants from building mate-
rials, vehicles, and house fires (Blomqvist et al. 2004; Lönnermark and Blomqvist
2006; Reisen 2011). The range of pollutants measured, as well as the measurement
methods, differed among these studies, and substantial gaps remain on the emissions
of hazardous air pollutants. In addition, limited information is available on emissions
from materials that contain flame retardants or lithium batteries, or that may have
highly toxic emissions.

Table 5.5 summarizes studies of emissions from combustion of structures and
vehicles, comparedwith similarmeasurements fromwildland fires. AlthoughEFs for
some of the most hazardous compounds are 2–1600 times greater from combustion
of vehicles or building materials compared to wildland fuels, total emissions depend
on the number and mass of structures or vehicles consumed in the fire. In the 2018
Camp Fire in California, nearly 20,000 structures were consumed, which may have
generated sizable emissions compared to those from natural fuels.

As no inventories of emissions from structures burned in the wildland–urban
interface exist, they are not included in smoke emission models. For example, in the
NEI model, urban areas consumed in wildfires are assigned a default vegetative fuel
loading and EFs that likely underestimate the emissions from burning structures and
vehicles. Therefore, air quality forecasts estimating fire progression into populated
areas may substantially under-predict smoke concentrations.

5.5 Conclusions

Because wildland fires are a major source of gases and aerosols, a thorough under-
standing of fire emissions is essential for addressing societal and climatic conse-
quences of wildland fire smoke. In recent years, a large body of laboratory and field
experiments has led to significant progress in characterizing the composition of fresh
smoke. More than 500 gases have been identified, and our knowledge regarding the
physical characteristics, chemical composition, and optical properties of aerosols
has expanded greatly. Quantifying wildland fire EFs is only the starting point for
characterizing emissions.

Decision support and research require emission inventories of pollutants released
into the atmosphere bywildlandfires. Emission inventorymethods for both predictive
(e.g., smoke forecasting) and retrospective (e.g., research or air quality regulation)
activities have evolved by leveraging scientific advances in smoke composition, fuels
and fuel consumption, and satellite remote sensing of fire activity and effects. Several
wildland fire emission inventories covering the CONUS are available to support
operational forecasts and retrospective analyses.

Despite recent advances, large gaps in smoke emission science remain:
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• There is a significant lack of EFmeasurements for wildfires; however, results from
recent field studies may soon address this gap in our understanding of emissions.

• Even with expanded field measurements of EFs, comprehensive emission esti-
mates across the spectrum of relevant fire activity will require extrapolating
laboratory-measured EFs to real fire conditions. A thorough evaluation of the
different methods used for extrapolating laboratory EFs is needed to identify best
practices and quantify uncertainties of derived EF.

• EFs and emission rates from residual smoldering combustion have received only
limited research attention. This knowledge shortfall has inhibited the development
of reliable models for predicting local smoke impacts from prescribed fire. Field
studies characterizing emissions from residual smoldering combustion are needed
to provide improved modeling tools to land managers.

• Discrepancies among emission inventories for the CONUS are significant. These
discrepancies are further complicated by the natural heterogeneity of wildland
systems. Comprehensive evaluation of these emission inventories is needed
to quantify their errors and improve their performance across operational and
research applications.

• The lack of reliable near-term (24 h) emission forecasts is an obstacle to improving
forecasts of smoke impacts on air quality. New methods for predicting short-term
fire growth and emissions are needed to improve air quality forecast.

• Toxic metals have been measured in wildland fire PM and may be a large source
of toxic metal emissions. Because toxic metal emissions depend on fuel and soil
characteristics (e.g., metal content by strata) and fire behavior, understanding how
wildland fires may be a source of these hazardous pollutants must be addressed.

• There is a growing need to understand the emmissions from burning structures.
Only limitedEFs and no emission inventories are available for evaluating potential
emission impacts of burned structures on the health of wildland firefighters and
nearby communities.

Acknowledgements The authors thank Kelley Barsanti (University of California Riverside), Tom
Moore (Western States Air Resources Council) and Talat Odman (Georgia Institute of Technology)
for valuable guidance in identifying and developing the topics covered in this chapter. We thank
three reviewers for their valuable and constructive comments and suggestions that have improved
this chapter and Brian Gullett for providing helpful suggestions.

References

Achtemeier GL, Goodrick SA, Liu YQ et al (2011) Modeling smoke plume-rise and dispersion
from Southern United States prescribed burns with daysmoke. Atmosphere 2:358–388

Akagi SK,Yokelson RJ,Wiedinmyer C et al (2011) Emission factors for open and domestic biomass
burning for use in atmospheric models. Atmos Chem Phys 11:4039–4072

Akagi SK, Yokelson RJ, Burling IR et al (2013) Measurements of reactive trace gases and variable
O-3 formation rates in someSouthCarolina biomass burning plumes.AtmosChemPhys 13:1141–
1165



158 S. P. Urbanski et al.

Akagi SK, Burling IR, Mendoza A et al (2014) Field measurements of trace gases emitted by
prescribed fires in Southeastern US pine forests using an open-path FTIR system. Atmos Chem
Phys 14:199–215

Alves CA, Gonçalves C, Pio CA et al (2010) Smoke emissions from biomass burning in a
Mediterranean shrubland. Atmos Environ 44:3024–3033

Alves C, Vicente A, Nunes T et al (2011) Summer 2009 wildfires in Portugal: emission of trace
gases and aerosol composition. Atmos Environ 45:641–649

AndersonGK, Sandberg DV, NorheimRA (2004) Fire emission production simulator (FEPS) user’s
guide version 1.0. http://www.fs.fed.us/pnw/fera/feps/index.shtml. 28 Jan 2020

Andreae MO (2019) Emission of trace gases and aerosols from biomass burning—an updated
assessment. Atmos Chem Phys 19:8523–8546

Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global
Biogeochem Cycles 15:955–966

Austin CC, Wang D, Ecobichon DJ et al (2001) Characterization of volatile organic compounds in
smoke at municipal structural fires. J Toxicol Environ Health A 63:437–458

Balachandran S, Pachon JE, Lee S et al (2013) Particulate and gas sampling of prescribed fires in
South Georgia, USA. Atmos Environ 81:125–135

Baldauf RW, Devlin RB, Gehr P et al (2016) Ultrafine particle metrics and research considerations:
review of the 2015 UFP workshop. Int J Environ Res Public Health 13:1054

Barkjohn KK, Gantt B, Clements AL (2020) Development and application of a United States wide
correction for PM2.5 data collected with the PurpleAir sensor. Atmos Meas Tech Discuss 1–34

Blomqvist P, Hertzberg T, Dalene M et al (2003) Isocyanates, aminoisocyanates and amines from
fires—a screening of common materials found in buildings. Fire Mater 27:275–294

Blomqvist P, Rosell L, Simonson M (2004) Emissions from fires part II: simulated room fires. Fire
Technol 40:59–73

Bond TC, Doherty SJ, Fahey DW et al (2013) Bounding the role of black carbon in the climate
system: a scientific assessment. J Geophys Res: Atmos 118:5380–5552

Briggs GA (1976) National Oceanic and Atmospheric Administration, Oak Ridge, Tenn. (USA).
Atmospheric Turbulence and Diffusion Lab; p. 425–478

Brey SJ, Ruminski M, Atwood SA et al (2018) Connecting smoke plumes to sources using hazard
mapping system (HMS) smoke and fire location data over North America. Atmos Chem Phys
18:1745–1761

Burling I, Yokelson RJ, Akagi S, Urbanski S, Wold C, Griffith DW et al (2011) Airborne and
ground-based measurements of the trace gases and particles emitted by prescribed fires in the
United States. Atmos Chem Phys. 11:12197–12216

Burling IR,YokelsonRJ, GriffithDWTet al (2010) Laboratorymeasurements of trace gas emissions
from biomass burning of fuel types from the southeastern and southwestern United States. Atmos
Chem Phys 10:11115–11130

Buseck PR, Adachi K, Andras G et al (2014) Ns-Soot: a material-based term for strongly light-
absorbing carbonaceous particles. Aerosol Sci Technol 48:777–788

Chen LWA, Moosmuller H, Arnott WP et al (2007) Emissions from laboratory combustion of
wildland fuels: emission factors and source profiles. Environ Sci Technol 41:4317–4325

Chuvieco E, Aguado I, Salas J et al (2019a) Satellite remote sensing contributions to wildland fire
science and management 6:81–96

Chuvieco E, Mouillot F, van der Werf GR et al (2019b) Historical background and current
developments for mapping burned area from satellite earth observation. Remote Sens Environ
225:45–64

Chow JC, Watson JG, Kuhns H et al (2004) Source profiles for industrial, mobile, and area sources
in the Big Bend Regional aerosol visibility and observational study. Chemosphere 54:185–208

Di Giuseppe F, Remy S, Pappenberger F et al (2017) Improving forecasts of biomass burning
emissions with the fire weather index. J Appl Meteorol Climatol 56:2789–2799

Dubovik O, Lapyonok T, Kaufman YJ et al (2008) Retrieving global aerosol sources from satellites
using inverse modeling. Atmos Chem Phys 8:209–250

http://www.fs.fed.us/pnw/fera/feps/index.shtml


5 Emissions 159

Echalar F, Gaudichet A, Cachier H et al (1995) Aerosol emissions by tropical forest and savanna
biomass burning: characteristic trace elements and fluxes. Geophys Res Lett 22:3039–3042

Evangeliou N, Eckhardt S (2020) Uncovering transport, deposition and impact of radionuclides
released after the early spring 2020 wildfires in the Chernobyl exclusion zone. Sci Rep 10:10655

Fabian T, Borgerson JL, Kerber MS et al (2010) Firefighter exposure to smoke particulates. Under-
writers Laboratories Inc, Northbrook. https://ulfirefightersafety.org/docs/EMW-2007-FP-02093.
pdf. 19 June 2020

Fent KW, Evans DE, Babik K et al (2018) Airborne contaminants during controlled residential fires.
J Occup Environ Hyg 15:399–412

Ford B, Martin MV, Zelasky SE et al (2018) Future fire impacts on smoke concentrations, visibility,
and health in the contiguous United States. Geohealth 2:229–247

Freeborn PH, Wooster MJ, Hao WM et al (2008) Relationships between energy release, fuel mass
loss, and trace gas and aerosol emissions during laboratory biomass fires. J Geophys Res: Atmos
113:D01301

French NHF, de Groot WJ, Jenkins LK et al (2011) Model comparisons for estimating carbon
emissions from North American wildland fire. J Geophys Res: Biogeosci 116:G00K05

Ferguson SA, Hardy CC (1994) Modeling smoldering emissions from prescribed broadcast burns
in the Pacific-Northwest. Int J Wildland Fire 4:135–142

Gann RG, Averill JD, Johnsson EL et al (2010) Fire effluent component yields from room-scale
fire tests. Fire Mater 34:285–314

Garofalo LA, Pothier MA, Levin EJT et al (2019) Emission and evolution of submicron organic
aerosol in smoke from wildfires in the western United States. ACS Earth Space Chem 3:1237–
1247

Gilardoni S (2017) Advances in organic aerosol characterization: from complex to simple. Aerosol
Air Qual Res 17:1447–1451

Geron C, Hays M (2013) Air emissions from organic soil burning on the coastal plain of North
Carolina. Atmos Environ 64:192–199

Gilman JB, Lerner BM, KusterWC et al (2015) Biomass burning emissions and potential air quality
impacts of volatile organic compounds and other trace gases from fuels common in theUS. Atmos
Chem Phys 15:13915–13938

Greenberg JP, Friedli H, Guenther AB et al (2006) Volatile organic emissions from the distillation
and pyrolysis of vegetation. Atmos Chem Phys 6:81–91

Grieshop AP, Logue JM, Donahue NM et al (2009) Laboratory investigation of photochemical
oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol
evolution. Atmos Chem Phys 9:1263–1277

Gullett B, Touati A, Oudejans L (2008) PCDD/F and aromatic emissions from simulated forest and
grassland fires. Atmos Environ 42:7997–8006

Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci
101:423–428

Hao WM, Babbit RE (2007) Smoke produced from residual combustion (Final report, JFSP-98-1-
9-0). U.S. Forest Service, Rocky Mountain Research Station, Missoula. https://www.firescience.
gov/projects/98-1-9-01/project/98-1-9-01_final_report.pdf. 10 Feb 2020

Hao WM, Baker S, Lincoln E et al (2018) Cesium emissions from laboratory fires. J Air Waste
Manage Assoc 68:1211–1223

Hassett-Sipple B, Hagler G, Vanderpool R, Hanley T (2020) PM2.5 temporal trends and instrument
performance assessment over 2018–2019 in Sarajevo, BiH. In: 1st Conference on urban planning
and regional development, Sarajevo, Bosnia, 30–31 Jan 2020

Hatch LE, Luo W, Pankow JF et al (2015) Identification and quantification of gaseous organic
compounds emitted from biomass burning using two-dimensional gas chromatography-time-of-
flight mass spectrometry. Atmos Chem Phys 15:1865–1899

Hatch LE, Rivas-Ubach A, Jen CN et al (2018) Measurements of I/SVOCs in biomass-burning
smoke using solid-phase extraction disks and two-dimensional gas chromatography.AtmosChem
Phys 18:17801–17817

https://ulfirefightersafety.org/docs/EMW-2007-FP-02093.pdf
https://www.firescience.gov/projects/98-1-9-01/project/98-1-9-01_final_report.pdf


160 S. P. Urbanski et al.

Hatch LE, Jen CN, Kreisberg NM et al (2019) Highly speciatedmeasurements of terpenoids emitted
from laboratory and mixed-conifer forest prescribed fires. Environ Sci Technol 53:9418–9428

Holder AL, Hagler GSW, Aurell J et al (2016) Particulate matter and black carbon optical properties
and emission factors from prescribed fires in the southeastern United States. J Geophys Res:
Atmos 121:3465–3483

Holder AL, Mebust AK, Maghran LA et al (2020) Field evaluation of low-cost particulate matter
sensors for measuring wildfire smoke. Sensors 20:4796

Hornbrook RS, Blake DR, Diskin GS et al (2011) Observations of nonmethane organic compounds
during ARCTAS—part 1: biomass burning emissions and plume enhancements. Atmos Chem
Phys 11:11103–11130

Hosseini S, Li Q, Cocker D et al (2010) Particle size distributions from laboratory-scale biomass
fires using fast response instruments. Atmos Chem Phys 10:8065–8076

Hosseini S, Urbanski SP, Dixit P et al (2013) Laboratory characterization of PM emissions from
combustion of wildland biomass fuels. J Geophys Res: Atmos 118:9914–9929

Hudak AT, Dickinson MB, Bright BC et al (2016) Measurements relating fire radiative energy
density and surface fuel consumption–RxCADRE 2011 and 2012. Int J Wildland Fire 25:25–37

Ichoku C, Ellison L (2014) Global top-down smoke-aerosol emissions estimation using satellite
fire radiative power measurements. Atmos Chem Phys 14:6643–6667

Janhall S, Andreae MO, Poschl U (2010) Biomass burning aerosol emissions from vegetation fires:
particle number and mass emission factors and size distributions. Atmos Chem Phys 10:1427–
1439

Jen CN, Hatch LE, Selimovic V et al (2019) Speciated and total emission factors of particulate
organics from burning western USwildland fuels and their dependence on combustion efficiency.
Atmos Chem Phys 19:1013–1026

Jolleys MD, Coe H, Mcfiggans G et al (2014) Organic aerosol emission ratios from the laboratory
combustion of biomass fuels. J Geophys Res: Atmos 119:850–12871

Jolly WM, Freeborn PH, Page WG et al (2019) Severe fire danger index: a forecastable metric to
inform firefighter and community wildfire risk management. Fire 2:47

Kaiser JW, Heil A, Andreae MO et al (2012) Biomass burning emissions estimated with a global
fire assimilation system based on observed fire radiative power. Biogeosciences 9:527–554

KochD,DelGenioAD(2010)Black carbon semi-direct effects on cloud cover: reviewand synthesis.
Atmos Chem Phys 10:7685–7696

Kopacz M, Jacob DJ, Fisher JA et al (2010) Global estimates of CO sources with high resolution
by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atmos
Chem Phys 10:855–876

Koplitz SN, Nolte CG, Pouliot GA et al (2018) Influence of uncertainties in burned area estimates
on modeled wildland fire PM2.5 and ozone pollution in the contiguous US. Atmos Environ
191:328–339

Koss AR, Sekimoto K, Gilman JB et al (2018) Non-methane organic gas emissions from biomass
burning: identification, quantification, and emission factors from PTR-ToF during the FIREX
2016 laboratory experiment. Atmos Chem Phys 18:3299–3319

Kristensen LJ, Taylor MP (2012) Fields and forests in flames: lead and mercury emissions from
wildfire pyrogenic activity. Environ Health Perspect 120:a56–a57

Lack DA, Moosmuller H, McMeeking GR et al (2014) Characterizing elemental, equivalent black,
and refractory black carbon aerosol particles: a review of techniques, their limitations and
uncertainties. Anal Bioanal Chem 406:99–122

LandisMS, LongRW,Krug J et al (2021) TheU.S. EPAwildland fire sensor challenge: performance
and evaluation of solver submitted multi-pollutant sensor systems. Atmos Environ 15:118165

Larkin S (2018) BlueSky Playground v3 help. https://sites.google.com/firenet.gov/wfaqrp-airfire-
info/playground/playground-v3-help?authuser=0. 28. 22 May 2020

Larkin NK, O’Neill SM, Solomon R et al (2009) The BlueSky smoke modeling framework. Int J
Wildland Fire 18:906–920

https://sites.google.com/firenet.gov/wfaqrp-airfire-info/playground/playground-v3-help%3Fauthuser%3D0


5 Emissions 161

Larkin NK, Raffuse SM, Strand TM (2014) Wildland fire emissions, carbon, and climate: US
emissions inventories. For Ecol Manage 317:61–69

Larkin NK, Raffuse SM, Huang S et al (2020) The comprehensive fire information reconciled
emissions (CFIRE) inventory: wildland fire emissions developed for the 2011 and 2014 U.S.
National emissions inventory. J Air Waste Manage Assoc 70:1165–1185

Lee S, Baumann K, Schauer JJ et al (2005) Gaseous and particulate emissions from prescribed
burning in Georgia. Environ Sci Technol 39:9049–9056

Leonard SS, Castranova V, Chen BT et al (2007) Particle size-dependent radical generation from
wildland fire smoke. Toxicology 236:103–113

Li FJ, Zhang XY, Kondragunta S, Roy DP (2018) Investigation of the fire radiative energy biomass
combustion coefficient: a comparison of polar and geostationary satellite retrievals over the
conterminous United States. J Geophys Res Biogeosci 123:722–739

Li HY, LambKD, Schwarz JP et al (2019a) Inter-comparison of black carbonmeasurementmethods
for simulated open biomass burning emissions. Atmos Environ 206:156–169

Li FJ, Zhang XY, Roy DP et al (2019b) Estimation of biomass-burning emissions by fusing the fire
radiative power retrievals from polar-orbiting and geostationary satellites across the conterminous
United States. Atmos Environ 211:274–287

Linak WP, Wendt JOL (1993) Toxic metal emissions from incineration: mechanisms and control.
Prog Energy Combust Sci 19:145–185

Lincoln E, Hao WM, Weise DR et al (2014) Wildland fire emission factors database. U.S. Forest
Service research data archive, Fort Collins. https://doi.org/10.2737/RDS-2014-0012. 22 May
2020

Liu JC, Mickley LJ, Sulprizio MP et al (2016) Particulate air pollution from wildfires in the western
US under climate change. Clim Change 138:655–666

Liu XX, Huey LG, Yokelson RJ et al (2017) Airborne measurements of western US wildfire emis-
sions: comparison with prescribed burning and air quality implications. J Geophys Res: Atmos
122:6108–6129

Lönnermark A, Blomqvist P (2006) Emissions from an automobile fire. Chemosphere 62:1043–
1056

Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–
737

Lu Q, Murphy BN, Qin M et al (2020) Simulation of organic aerosol formation during the
CalNex study: updated mobile emissions and secondary organic aerosol parameterization for
intermediate-volatility organic compounds. Atmos Chem Phys 20:4313–4332

LuX, Zhang L, YueX et al (2016)Wildfire influences on the variability and trend of summer surface
ozone in the mountainous western United States. Atmos Chem Phys 16:14687–14702

Lutes DC (2019) FOFEM: first order fire effects model v6.5 user guide. http://firelab.org/project/
fofem. 22 May 2020

May AA, Levin EJT, Hennigan CJ et al (2013) Gas-particle partitioning of primary organic aerosol
emissions: 3. Biomass burning. J Geophys Res: Atmos 118:11327–11338

May AA,McMeeking GR, Lee T et al (2014) Aerosol emissions from prescribed fires in the United
States: a synthesis of laboratory and aircraft measurements. J Geophys Res: Atmos 119:11826–
11849

MayAA, Lee T,McMeekingGR et al (2015) Observations and analysis of organic aerosol evolution
in some prescribed fire smoke plumes. Atmos Chem Phys 15:6323–6335

McClure CD, Jaffe DA (2018) US particulate matter air quality improves except in wildfire-prone
areas. Proc National Acad Sci USA 115:7901–7906

McMeeking GR, Kreidenweis SM, Baker S et al (2009) Emissions of trace gases and aerosols
during the open combustion of biomass in the laboratory. J Geophys Res: Atmos 114:D19210

Meddens AJH, Kolden CA, Lutz JA (2016) Detecting unburned areas within wildfire perimeters
using Landsat and ancillary data across the northwestern United States. Remote Sens Environ
186:275–285

https://doi.org/10.2737/RDS-2014-0012
http://firelab.org/project/fofem


162 S. P. Urbanski et al.

Mehadi A, Moosmüller H, Campbell DE et al (2020) Laboratory and field evaluation of real-time
and near real-time PM2.5 smoke monitors. J Air Waste Manage Assoc 70:158–179

Mu M, Randerson JT, van der Werf GR et al (2011) Daily and 3-hourly variability in global fire
emissions and consequences for atmospheric model predictions of carbon monoxide. J Geophys
Res: Atmos 116:D24303

Narodoslawsky M, Obernberger I (1996) From waste to raw material—the route from biomass to
wood ash for cadmium and other heavy metals. J Hazard Mater 50:157–168

O’Dell K, Hornbrook RS, PermarW et al (2020) Hazardous air pollutants in fresh and aged western
US wildfire smoke and implications for long-term exposure. Environ Sci Technol 54:11838–
11847

Odigie KO, Flegal AR (2014) Trace metal inventories and lead isotopic composition chronicle a
forest fire’s remobilization of industrial contaminants deposited in the Angeles national forest.
PLoS ONE 9:e107835–e107835

O’Shea SJ, Allen G, Gallagher MW et al (2013) Airborne observations of trace gases over boreal
CanadaduringBORTAS: campaign climatology, airmass analysis and enhancement ratios.Atmos
Chem Phys 13:12451–12467

Ottmar RD (2001) Smoke source characteristics. In: Hardy CC, Ottmar RD, Peterson JL et al
(eds) Smoke management guide for prescribed and wildland fire: 2001 edition. National Wildfire
Coordination Group, Boise, pp 89–106

Ottmar RD (2014) Fuel and fire tools. https://www.fs.usda.gov/pnw/tools/fuel-and-fire-tools-fft. 28
Jan 2020

Ottmar RD (2018) Fuel consumption and smoke production. In: Peterson J, Lahm P, Fitch M
et al (eds) NWCG smoke management guide for prescribed fire. National Wildfire Coordinating
Group, Boise, pp 110–143

Persson B, Simonson M (1998) Fire emissions into the atmosphere. Fire Technol 34:266–279
Peterson D, Hyer E, Wang J (2013) A short-term predictor of satellite-observed fire activity in
the North American boreal forest: toward improving the prediction of smoke emissions. Atmos
Environ 71:304–310

Peterson J, Lahm P, Fitch M et al (eds) (2018) NWCG smoke management guide for prescribed
fire. National Wildfire Coordination Group, Boise

Petrenko M, Kahn R, Chin M et al (2017) Refined use of satellite aerosol optical depth snapshots to
constrain biomass burning emissions in the GOCARTModel. J Geophys Res: Atmos 122:10983–
11004

Petzold A, Ogren JA, Fiebig M et al (2013) Recommendations for reporting “black carbon”
measurements. Atmos Chem Phys 13:8365–8379

Popovicheva OB, Engling G, Diapouli E et al (2016) Impact of smoke intensity on size-resolved
aerosol composition andmicrostructure during the biomass burning season in northwest Vietnam.
Aerosol Air Qual Res 16:2635–2654

Prichard SJ, Sandberg DV, Ottmar RD et al (2013) Fuel characteristic classification system version
3.0: technical documentation. General technical report PNW-GTR-887. U.S. Forest Service,
Pacific Northwest Research Station, Portland

Prichard SJ, Karau EC, Ottmar RD et al (2014) Evaluation of the CONSUME and FOFEM fuel
consumption models in pine and mixed hardwood forests of the eastern United States. Can J Res
44:784–795

Prichard SJ, O’Neill SM, Eagle P et al (2020) Wildland fire emission factors in North America:
synthesis of existing data, measurement needs and management applications. Int J Wildland Fire
29:132–147

Reff A, Bhave PV, Simon H et al (2009) Emissions inventory of PM2.5 trace elements across the
United States. Environ Sci Technol 43:5790–5796

Reid JS, Eck TF, Christopher SA et al (2005a) A review of biomass burning emissions part III:
intensive optical properties of biomass burning particles. Atmos Chem Phys 5:827–849

Reid JS, KoppmannR, Eck TF et al (2005b)A review of biomass burning emissions part II: intensive
physical properties of biomass burning particles. Atmos Chem Phys 5:799–825

https://www.fs.usda.gov/pnw/tools/fuel-and-fire-tools-fft


5 Emissions 163

Reisen F (2011) Inventory of major materials present in and around houses and their combustion
emission products. Bushfire CRC, Melbourne. https://www.bushfirecrc.com/sites/default/files/
managed/resource/inventory.pdf. 22 May 2020

Reisen F, Bhujel M, Leonard J (2014) Particle and volatile organic emissions from the combustion
of a range of building and furnishing materials using a cone calorimeter. Fire Saf J 69:76–88

Reisen F, Meyer CP, Weston CJ et al (2018) Ground-based field measurements of PM2.5 emission
factors from flaming and smoldering combustion in eucalypt forests. J Geophys Res: Atmos
123:8301–8314

Robinson AL, Grieshop AP, Donahue NM et al (2010) Updating the conceptual model for fine
particle mass emissions from combustion systems. J Air Waste Manage Assoc 60:1204–1222

Santoso MA, Christensen EG, Yang J et al (2019) Review of the transition from smouldering to
flaming combustion in wildfires. Front Mech Eng 5(49):1–20

SchroederW, Oliva P, Giglio L et al (2014) The newVIIRS 375m active fire detection data product:
algorithm description and initial assessment. Remote Sens Environ 143:85–96

Schweizer D, Cisneros R, Shaw G (2016) A comparative analysis of temporary and permanent
beta attenuation monitors: the importance of understanding data and equipment limitations when
creating PM2.5 air quality health advisories. Atmos Pollut Res 7:865–875

SekimotoK,KossAR,Gilman JB et al (2018)High- and low-temperature pyrolysis profiles describe
volatile organic compoundemissions fromwesternUSwildfire fuels.AtmosChemPhys18:9263–
9281

SelimovicV,YokelsonRJ,WarnekeC et al (2018)Aerosol optical properties and trace gas emissions
by PAXandOP-FTIR for laboratory-simulatedwesternUSwildfires during FIREX.AtmosChem
Phys 18:2929–2948

Simpson IJ, Akagi SK, Barletta B et al (2011) Boreal forest fire emissions in fresh Canadian smoke
plumes: C-1-C-10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN.
Atmos Chem Phys 11:6445–6463

Short KC, Finney MA, Vogler KC et al (2020) Spatial datasets of probabilistic wildfire risk compo-
nents for the United States (270 m), 2nd edn. U.S. Forest Service Research Data Archive, Fort
Collins. https://doi.org/10.2737/RDS-2016-0034-2. 22 May 2020

Stec AA (2017) Fire toxicity—the elephant in the room? Fire Saf J 91:79–90
Szpakowski DM, Jensen JLR (2019) A review of the applications of remote sensing in fire ecology.
Remote Sens 11:2638

Tangahu BV, Sheikh Abdullah SR, Basri H et al (2011) A review on heavy metals (As, Pb, and Hg)
uptake by plants through phytoremediation. Int J Chem Eng 2011:939161

Turn SQ, Jenkins BM,Chow JC et al (1997) Elemental characterization of particulatematter emitted
from biomass burning: wind tunnel derived source profiles for herbaceous and wood fuels. J
Geophys Res: Atmos 102:3683–3699

Urbanski SP (2013) Combustion efficiency and emission factors for wildfire-season fires in mixed
conifer forests of the northern rocky mountains, US. Atmos Chem Phys 13:7241–7262

Urbanski S (2014)Wildland fire emissions, carbon, and climate: emission factors. For EcolManage
317:51–60

Urbanski SP, Hao WM, Nordgren B (2011) The wildland fire emission inventory: western United
States emission estimates and an evaluation of uncertainty. Atmos Chem Phys 11:12973–13000

Urbanski SP, Reeves MC, Corley RE et al (2018) Contiguous United States wildland fire emission
estimates during 2003–2015. Earth Syst Sci Data 10:2241–2274

U.S. Environmental Protection Agency (USEPA) (1996)Miscellaneous sources. In: AP 42, 5th edn,
vol I, chap 13. Washington, DC. https://www3.epa.gov/ttn/chief/ap42/ch13/index.html. 22 May
2020

U.S. Environmental Protection Agency (USEPA) (2014) 2014 National emissions inventory (NEI)
data, tier summaries. Washington, DC. https://www.epa.gov/air-emissions-inventories/2014-nat
ional-emissions-inventory-nei-data. 10 April 2020

https://www.bushfirecrc.com/sites/default/files/managed/resource/inventory.pdf
https://doi.org/10.2737/RDS-2016-0034-2
https://www3.epa.gov/ttn/chief/ap42/ch13/index.html
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data


164 S. P. Urbanski et al.

U.S. Environmental Protection Agency (USEPA) (2020) Integrated Science Assessment (ISA) for
particulate matter. (EPA/600/R-19/188). U.S. Environmental Protection Agency, Washington,
DC. https://www.epa.gov/isa/integrated-science-assessment-isa-particulate-matter. 03 Feb 2021

van der Werf GR, Randerson JT, Giglio L et al (2017) Global fire emissions estimates during
1997–2016. Earth Syst Sci Data 9:697–720

van Leeuwen TT, van der Werf GR, Hoffmann AA et al (2014) Biomass burning fuel consumption
rates: a field measurement database. Biogeosciences 11:7305–7329

Ward DE, Hardy CC (1989) Organic and elemental profiles for smoke from prescribed fires. In:
Watson JG (ed) Receptor models in air resources management: Transactions of an international
specialty conference of the Air & Waste Management Association. Air and Waste Management
Association, Pittsburgh, pp 299–321

Wade DD, Lunsford JD (1989) A guide for prescribed fire in southern forests. Technical Publication
R8–TP–11. U.S. Forest Service, Southern Region, Atlanta

Wooster MJ, Zhukov B, Oertel D (2003) Fire radiative energy for quantitative study of biomass
burning: derivation from theBIRDexperimental satellite and comparison toMODISfire products.
Remote Sens Environ 86:83–107

Wooster MJ, Roberts G, Perry GLW et al (2005) Retrieval of biomass combustion rates and totals
from fire radiative power observations: FRP derivation and calibration relationships between
biomass consumption and fire radiative energy release. J Geophys Res: Atmos 110:D24311

Wright CS, Balog CS, Kelly JW (2010a) Estimating volume, biomass, and potential emissions
of hand-piled fuels. General Technical Report PNW-GTR-805. U.S. Forest Service, Pacific
Northwest Research Station, Portland

Wright CS, Eagle PC, Olson DL (2010b) A high-quality fuels database of photos and information.
Fire Manage Today 70:27–31

Wu L, Taylor MP, Handley HK (2017) Remobilisation of industrial lead depositions in ash during
Australian wildfires. Sci Total Environ 599–600:1233–1240

Yokelson RJ, Griffith DWT, Ward DE (1996) Open-path Fourier transform infrared studies of
large-scale laboratory biomass fires. J Geophys Res: Atmos 101:21067–21080

Yokelson RJ, Goode JG, Ward DE et al (1999) Emissions of formaldehyde, acetic acid, methanol,
and other trace gases frombiomass fires inNorthCarolinameasured by airborne Fourier transform
infrared spectroscopy. J Geophys Res: Atmos 104:30109–30125

Yokelson RJ, Burling IR, Gilman JB et al (2013) Coupling field and laboratory measurements to
estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmos
Chem Phys 13:89–116

YueX,MickleyLJ,Logan JAet al (2013)Ensemble projections ofwildfire activity and carbonaceous
aerosol concentrations over the western United States in the mid-21st century. Atmos Environ
77:767–780

Zhang TR, Wooster MJ, Xu WD (2017) Approaches for synergistically exploiting VIIRS I- and
M-Band data in regional active fire detection and FRP assessment: a demonstration with respect
to agricultural residue burning in Eastern China. Remote Sens Environ 198:407–424

Zhang XY, Kondragunta S, Ram J et al (2012) Near-real-time global biomass burning emissions
product from geostationary satellite constellation. J Geophys Res: Atmos 117:D14201

https://www.epa.gov/isa/integrated-science-assessment-isa-particulate-matter


5 Emissions 165

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Emissions
	Recommended Citation

	5 Emissions
	5.1 Introduction
	5.2 Current State of the Science
	5.2.1 Fuel Properties, Combustion Processes, and Emissions
	5.2.2 Smoke Composition and Emission Factors
	5.2.3 Emission Calculations

	5.3 Existing Data, Tools, Models, and Other Technology
	5.3.1 Emission Factors
	5.3.2 Emission Inventories
	5.3.3 Emission Models for Land Management

	5.4 Gaps in Data, Understanding, and Tools/Technology
	5.4.1 Emission Factors for Wildfires
	5.4.2 Connecting Laboratory Studies with Field Observations
	5.4.3 Variability of EFs with Combustion Conditions
	5.4.4 Validation of Emission Inventories
	5.4.5 Forecasting Wildfire Emissions
	5.4.6 Measuring and Modeling PM2.5
	5.4.7 Emissions of Hazardous Air Pollutants
	5.4.8 Emissions from Structure Fires

	5.5 Conclusions
	References


