16 research outputs found

    Method validation and preliminary qualification of pharmacodynamic biomarkers employed to evaluate the clinical efficacy of an antisense compound (AEG35156) targeted to the X-linked inhibitor of apoptosis protein XIAP

    Get PDF
    Data are presented on pharmacodynamic (PD) method validation and preliminary clinical qualification of three PD biomarker assays. M65 Elisa, which quantitates different forms of circulating cytokeratin 18 (CK18) as putative surrogate markers of both apoptotic and nonapoptotic tumour cell death, was shown to be highly reproducible: calibration curve linearity r2=0.996, mean accuracy >91% and mean precision <3%, n=27. Employing recombinant (r) CK18 and caspase cleaved CK18 (CK18 Asp396 neo-epitope) as external standards, kit to kit reproducibly was <6% (n=19). rCK18 was stable in plasma for 4 months at −20°C and −80°C, for 4 weeks at 4°C and had a half-life of 2.3 days at 37°C. Cytokeratin 18 Asp396 NE, the M30 Apoptosense Elisa assay antigen, was stable in plasma for 6 months at −20°C and −80°C, for 3 months at 4°C, while its half-life at 37°C was 3.8 days. Within-day variations in endogenous plasma concentrations of the M30 and M65 antigens were assessed in two predose blood samples collected from a cohort of 15 ovarian cancer patients receiving carboplatin chemotherapy and were shown to be no greater than the variability associated with methods themselves. Between-day fluctuations in circulating levels of the M30 and M65 antigens and in XIAP mRNA levels measured in peripheral blood mononuclear cells by quantitative (q) RT–PCR were evaluated in two predose blood samples collected with a 5- to 7-day gap from 23 patients with advanced cancer enrolled in a phase I trial. The mean variation between the two pretreatment values ranged from 13 to 14 to 25%, respectively, for M65, M30 and qRT–PCR. These data suggest that the M30 and M65 Elisa's and qRT–PCR as PD biomarker assays have favourable performance characteristics for further investigation in clinical trials of anticancer agents which induce tumour apoptosis/necrosis or knockdown of the anti-apoptotic protein XIAP

    Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer

    Get PDF
    Citrullinated histone H3 (H3Cit) is a central player in the neutrophil release of nuclear chromatin, known as neutrophil extracellular traps (NETs). NETs have been shown to elicit harmful effects on the host, and were recently proposed to promote tumor progression and spread. Here we report significant elevations of plasma H3Cit in patients with advanced cancer compared with age-matched healthy individuals. These elevations were specific to cancer patients as no increase was observed in severely ill and hospitalized patients with a higher non-malignant comorbidity. The analysis of neutrophils from cancer patients showed a higher proportion of neutrophils positive for intracellular H3Cit compared to severely ill patients. Moreover, the presence of plasma H3Cit in cancer patients strongly correlated with neutrophil activation markers neutrophil elastase (NE) and myeloperoxidase (MPO), and the inflammatory cytokines interleukin-6 and -8, known to induce NETosis. In addition, we show that high levels of circulating H3Cit strongly predicted poor clinical outcome in our cohort of cancer patients with a 2-fold increased risk for short-term mortality. Our results also corroborate the association of NE, interleukin-6 and -8 with poor clinical outcome. Taken together, our results are the first to unveil H3Cit as a potential diagnostic and prognostic blood marker associated with an exacerbated inflammatory response in patients with advanced cancer

    The role of extracellular histone in organ injury

    No full text
    Histones are intra-nuclear cationic proteins that are present in all eukaryotic cells and are highly conserved acrosss pecies. Within the nucleus, they provide structural stability to chromatin and regulate gene expression. Histone may be released into the extracellular space in three forms: freely, as a DNA-bound nucleosome or as part of neutrophil extracellular traps, and all three can be deteted in serum after significant cellular death such as sepsis, trauma, ischaemia/reperfusion (I/R) injury and autoimmune disease. Once in the extracellular space, histones actas Damage-Associated Molecular Pattern (DAMP) proteins, activating theimmune system and causing further cytotoxicity. They interact with Toll-Like Receptors (TLRs), complement and the phospholi pids of cell membranes inducing endothelial and epithelial cytotoxicity, TLR2/TLR4/TLR9 activation and pro-inflammatory cytokine/chemokine release via MyD88, NFκB and NLRP3 inflammasome dependent pathways. Drugs that block the release of histone, neutralise circulating histone or block histone signal transduction provide significant protection from mortality in animal models of acute organ injury but warrant further research to in form future clinical applications
    corecore