90 research outputs found

    Cortical regions activated by spectrally degraded speech in adults with single sided deafness or bilateral normal hearing

    Get PDF
    Those with profound sensorineural hearing loss from single sided deafness (SSD) generally experience greater cognitive effort and fatigue in adverse sound environments. We studied cases with right ear, SSD compared to normal hearing (NH) individuals. SSD cases were significantly less correct in naming last words in spectrally degraded 8- and 16-band vocoded sentences, despite high semantic predictability. Group differences were not significant for less intelligible 4-band sentences, irrespective of predictability. SSD also had diminished BOLD percent signal changes to these same sentences in left hemisphere (LH) cortical regions of early auditory, association auditory, inferior frontal, premotor, inferior parietal, dorsolateral prefrontal, posterior cingulate, temporal-parietal-occipital junction, and posterior opercular. Cortical regions with lower amplitude responses in SSD than NH were mostly components of a LH language network, previously noted as concerned with speech recognition. Recorded BOLD signal magnitudes were averages from all vertices within predefined parcels from these cortex regions. Parcels from different regions in SSD showed significantly larger signal magnitudes to sentences of greater intelligibility (e.g., 8- or 16- vs. 4-band) in all except early auditory and posterior cingulate cortex. Significantly lower response magnitudes occurred in SSD than NH in regions prior studies found responsible for phonetics and phonology of speech, cognitive extraction of meaning, controlled retrieval of word meaning, and semantics. The findings suggested reduced activation of a LH fronto-temporo-parietal network in SSD contributed to difficulty processing speech for word meaning and sentence semantics. Effortful listening experienced by SSD might reflect diminished activation to degraded speech in the affected LH language network parcels. SSD showed no compensatory activity in matched right hemisphere parcels

    Relationship between electrode position and temporal modulation sensitivity in cochlear implant users: Are close electrodes always better?

    Get PDF
    Temporal modulation sensitivity has been studied extensively for cochlear implant (CI) users due to its strong correlation to speech recognition outcomes. Previous studies reported that temporal modulation detection thresholds (MDTs) vary across the tonotopic axis and attributed this variation to patchy neural survival. However, correlates of neural health identified in animal models depend on electrode position in humans. Nonetheless, the relationship between MDT and electrode location has not been explored. We tested 13 ears for the effect of distance on modulation sensitivity, specifically targeting the question of whether electrodes closer to the modiolus are universally beneficial. Participants in this study were postlingually deafened and users of Cochlear Nucleus CIs. The distance of each electrode from the medial wall (MW) of the cochlea and mid-modiolar axis (MMA) was measured from scans obtained using computerized tomography (CT) imaging. The distance measures were correlated with slopes of spatial tuning curves measured on selected electrodes to investigate if electrode position accounts, at least in part, for the width of neural excitation. In accordance with previous findings, electrode position explained 24% of the variance in slopes of the spatial tuning curves. All functioning electrodes were also measured for MDTs. Five ears showed a positive correlation between MDTs and at least one distance measure across the array; 6 ears showed negative correlations and the remaining two ears showed no relationship. The ears showing positive MDT-distance correlations, thus benefiting from electrodes being close to the neural elements, were those who performed better on the two speech recognition measures, i.e., speech reception thresholds (SRTs) and recognition of the AzBio sentences. These results could suggest that ears able to take advantage of the proximal placement of electrodes are likely to have better speech recognition outcomes. Previous histological studies of humans demonstrated that speech recognition is correlated with spiral ganglion cell counts. Alternatively, ears with good speech recognition outcomes may have good overall neural health, which is a precondition for close electrodes to produce spatially confined neural excitation patterns that facilitate modulation sensitivity. These findings suggest that the methods to reduce channel interaction, e.g., perimodiolar electrode array or current focusing, may only be beneficial for a subgroup of CI users. Additionally, it suggests that estimating neural survival preoperatively is important for choosing the most appropriate electrode array type (perimodiolar vs. lateral wall) for optimal implant function

    Changes in auditory perceptions and cortex resulting from hearing recovery after extended congenital unilateral hearing loss

    Get PDF
    Monaural hearing induces auditory system reorganization. Imbalanced input also degrades time-intensity cues for sound localization and signal segregation for listening in noise. While there have been studies of bilateral auditory deprivation and later hearing restoration (e.g. cochlear implants), less is known about unilateral auditory deprivation and subsequent hearing improvement. We investigated effects of long-term congenital unilateral hearing loss on localization, speech understanding, and cortical organization following hearing recovery. Hearing in the congenitally affected ear of a 41 year old female improved significantly after stapedotomy and reconstruction. Pre-operative hearing threshold levels showed unilateral, mixed, moderately-severe to profound hearing loss. The contralateral ear had hearing threshold levels within normal limits. Testing was completed prior to, and three and nine months after surgery. Measurements were of sound localization with intensity-roved stimuli and speech recognition in various noise conditions. We also evoked magnetic resonance signals with monaural stimulation to the unaffected ear. Activation magnitudes were determined in core, belt, and parabelt auditory cortex regions via an interrupted single event design. Hearing improvement following 40 years of congenital unilateral hearing loss resulted in substantially improved sound localization and speech recognition in noise. Auditory cortex also reorganized. Contralateral auditory cortex responses were increased after hearing recovery and the extent of activated cortex was bilateral, including a greater portion of the posterior superior temporal plane. Thus, prolonged predominant monaural stimulation did not prevent auditory system changes consequent to restored binaural hearing. Results support future research of unilateral auditory deprivation effects and plasticity, with consideration for length of deprivation, age at hearing correction, degree and type of hearing loss

    Optimizing the perception of soft speech and speech in noise with the Advanced Bionics cochlear implant system

    Get PDF
    This study aimed to provide guidelines to optimize perception of soft speech and speech in noise for Advanced Bionics cochlear implant (CI) users

    Intervention to enhance skilled arm and hand movements after stroke: A feasibility study using a new virtual reality system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rehabilitation programs designed to develop skill in upper extremity (UE) function after stroke require progressive practice that engage and challenge the learner. Virtual realty (VR) provides a unique environment where the presentation of stimuli can be controlled systematically for optimal challenge by adapting task difficulty as performance improves. We describe four VR tasks that were developed and tested to improve arm and hand movement skills for individuals with hemiparesis.</p> <p>Methods</p> <p>Two participants with chronic post-stroke paresis and different levels of motor severity attended 12 training sessions lasting 1 to 2 hours each over a 3-week period. Behavior measures and questionnaires were administered pre-, mid-, and post-training.</p> <p>Results</p> <p>Both participants improved VR task performance across sessions. The less impaired participant averaged more time on task, practiced a greater number of blocks per session, and progressed at a faster rate over sessions than the more impaired participant. Impairment level did not change but both participants improved functional ability after training. The less impaired participant increased the number of blocks moved on the Box & Blocks test while the more impaired participant achieved 4 more items on the Functional Test of the Hemiparetic UE.</p> <p>Conclusion</p> <p>Two participants with differing motor severity were able to engage in VR based practice and improve performance over 12 training sessions. We were able to successfully provide individualized, progressive practice based on each participant's level of movement ability and rate of performance improvement.</p

    The prevalence and incidence of mental ill-health in adults with autism and intellectual disabilities

    Get PDF
    The prevalence, and incidence, of mental ill-health in adults with intellectual disabilities and autism were compared with the whole population with intellectual disabilities, and with controls, matched individually for age, gender, ability-level, and Down syndrome. Although the adults with autism had a higher point prevalence of problem behaviours compared with the whole adult population with intellectual disabilities, compared with individually matched controls there was no difference in prevalence, or incidence of either problem behaviours or other mental ill-health. Adults with autism who had problem behaviours were less likely to recover over a two-year period than were their matched controls. Apparent differences in rates of mental ill-health are accounted for by factors other than autism, including Down syndrome and ability level

    A posture and mobility training package for care home staff: results of a cluster randomised controlled feasibility trial (the PATCH trial)

    Get PDF
    Background: provision of care for care home residents with complex needs is challenging. Physiotherapy and activity interventions can improve well-being but are often time-limited and resource intensive. A sustainable approach is to enhance the confidence and skills of staff who provide care. This trial assessed the feasibility of undertaking a definitive evaluation of a posture and mobility training programme for care staff. Design and setting: a cluster randomised controlled feasibility trial with embedded process evaluation. Ten care homes in Yorkshire, United Kingdom, were randomised (1:1) to the skilful care training package (SCTP) or usual care (UC). Participants: residents who were not independently mobile. Intervention: SCTP—delivered by physiotherapists to care staff. Objectives and measurements: key objectives informed progression to a definitive trial. Recruitment, retention and intervention uptake were monitored. Data, collected by a blinded researcher, included pain, posture, mobility, hospitalisations and falls. This informed data collection feasibility and participant safety. Results: a total of 348 residents were screened; 146 were registered (71 UC, 75 SCTP). Forty two were lost by 6 months, largely due to deaths. While data collection from proxy informants was good (>95% expected data), attrition meant that data completion rates did not meet target. Data collection from residents was poor due to high levels of dementia. Intervention uptake was variable—staff attendance at all sessions ranged from 12.5 to 65.8%. There were no safety concerns. Conclusion: care home and resident recruitment are feasible, but refinement of data collection approaches and intervention delivery are needed for this trial and care home research more widely

    Standardization of cytokine flow cytometry assays

    Get PDF
    BACKGROUND: Cytokine flow cytometry (CFC) or intracellular cytokine staining (ICS) can quantitate antigen-specific T cell responses in settings such as experimental vaccination. Standardization of ICS among laboratories performing vaccine studies would provide a common platform by which to compare the immunogenicity of different vaccine candidates across multiple international organizations conducting clinical trials. As such, a study was carried out among several laboratories involved in HIV clinical trials, to define the inter-lab precision of ICS using various sample types, and using a common protocol for each experiment (see additional files online). RESULTS: Three sample types (activated, fixed, and frozen whole blood; fresh whole blood; and cryopreserved PBMC) were shipped to various sites, where ICS assays using cytomegalovirus (CMV) pp65 peptide mix or control antigens were performed in parallel in 96-well plates. For one experiment, antigens and antibody cocktails were lyophilised into 96-well plates to simplify and standardize the assay setup. Results (CD4(+)cytokine(+ )cells and CD8(+)cytokine(+ )cells) were determined by each site. Raw data were also sent to a central site for batch analysis with a dynamic gating template. Mean inter-laboratory coefficient of variation (C.V.) ranged from 17–44% depending upon the sample type and analysis method. Cryopreserved peripheral blood mononuclear cells (PBMC) yielded lower inter-lab C.V.'s than whole blood. Centralized analysis (using a dynamic gating template) reduced the inter-lab C.V. by 5–20%, depending upon the experiment. The inter-lab C.V. was lowest (18–24%) for samples with a mean of >0.5% IFNγ + T cells, and highest (57–82%) for samples with a mean of <0.1% IFNγ + cells. CONCLUSION: ICS assays can be performed by multiple laboratories using a common protocol with good inter-laboratory precision, which improves as the frequency of responding cells increases. Cryopreserved PBMC may yield slightly more consistent results than shipped whole blood. Analysis, particularly gating, is a significant source of variability, and can be reduced by centralized analysis and/or use of a standardized dynamic gating template. Use of pre-aliquoted lyophilized reagents for stimulation and staining can provide further standardization to these assays
    corecore