26 research outputs found

    Investigating Deep Learning for Identification of Crabs and Lobsters on Fishing Boats

    Get PDF
    This paper describes a collaboration between marine and computer scientists to improve fisheries data collection. We evaluate deep learning (DL)-based solutions for identifying crabs and lobsters onboard fishing boats. A custom made electronic camera systems onboard the fishing boats captures the video clips. An automated process of frame extraction is adopted to collect images of crabs and lobsters for training and evaluating DL networks. We train Faster R-CNN, Single Shot Detector (SSD), and You Only Look Once (YOLO) with multiple backbones and input sizes. We also evaluate the efficiency of lightweight models for low-power devices equipped on fishing boats and compare the results of MobileNet-based SSD and YOLO-tiny versions. The models trained with higher input sizes result in lower frames per second (FPS) and vice versa. Base models are more accurate but compromise computational and run time cost. Lighter versions are flexible to install with lower mAP than full models. The pre-trained weights for training models on new datasets have a negligible impact on the results. YOLOv4-tiny is a balanced trade-off between accuracy and speed for object detection for low power devices that is the main step of our proposed pipeline for automated recognition and measurement of crabs and lobsters on fishing boats

    Defining thresholds of sustainable impact on benthic communities in relation to fishing disturbance

    Get PDF
    AbstractWhile the direct physical impact on seabed biota is well understood, no studies have defined thresholds to inform an ecosystem-based approach to managing fishing impacts. We addressed this knowledge gap using a large-scale experiment that created a controlled gradient of fishing intensity and assessed the immediate impacts and short-term recovery. We observed a mosaic of taxon-specific responses at various thresholds. The lowest threshold of significant lasting impact occurred between 1 and 3 times fished and elicited a decrease in abundance of 39 to 70% for some sessile epifaunal organisms (cnidarians, bryozoans). This contrasted with significant increases in abundance and/or biomass of scavenging species (epifaunal echinoderms, infaunal crustaceans) by two to four-fold in areas fished twice and more. In spite of these significant specific responses, the benthic community structure, biomass and abundance at the population level appeared resilient to fishing. Overall, natural temporal variation in community metrics exceeded the effects of fishing in this highly dynamic study site, suggesting that an acute level of disturbance (fished over six times) would match the level of natural variation. We discuss the implications of our findings for natural resources management with respect to context-specific human disturbance and provide guidance for best fishing practices.</jats:p

    Using bio-physical modelling and population genetics for conservation and management of an exploited species, Pecten maximus L.

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The microsatellite data along with the site location data that support the findings of this study are openly available in FigShare at https://doi.org/10.6084/m9.figshare.12907430Connectivity between populations is important when considering conservation or the management of exploitation of vulnerable species. We investigated how populations of a broadcast-spawning marine species (scallop, Pecten maximus) that occur in discrete geographic locations were connected to each other. Population genetic insights were related to the outputs from a three-dimensional hydrodynamic model implemented with scallop larval behaviour to understand the extent to which these areas were linked by oceanographic processes and how this was altered by season and two contrasting years that had strongly different average temperature records (warm vs cold) to provide contrasting oceanographic conditions. Our results span from regional to shelf scale. Connectivity was high at a regional level (e.g. northern Irish Sea), but lower at scales >100 km between sites. Some localities were possibly isolated thus dependent on self-recruitment to sustain local populations. Seasonal timing of spawning and inter-annual fluctuations in seawater temperature influenced connectivity patterns, and hence will affect spatial recruitment. Summer rather than spring spawning increased connectivity among some populations, due to the seasonal strengthening of temperature-driven currents. Furthermore, the warm year resulted in higher levels of modelled connectivity than the cold year. The combination of genetic and oceanographic approaches provided valuable insights into the structure and connectivity at a continental shelf scale. This insight provides a powerful basis for defining conservation management units and the appropriate scale for spatial management. Temporal fluctuations in temperature impact upon variability in connectivity, suggesting that future work should account for ocean warming when investigating population resilience.Isle of Man GovernmentEuropean Fisheries FundEuropean Union Regional Development Fun

    New insights on the population genetic structure of the great scallop (Pecten maximus) in the English Channel coupling microsatellite data and demogenetic simulations.

    Get PDF
    International audienceThe great scallop (Pecten maximus) is a commercially important bivalve in Europe, particularly in the English Channel, where fisheries are managed at regional and local scales through the regulation of fishing effort. In the long term, knowledge about larval dispersal and gene flow between populations is essential to ensure proper stock management. Yet, previous population genetic studies have reported contradictory results. In this study, scallop samples collected across the main fishing grounds along the French and English coasts of the English Channel (20 samples with temporal replicates for three sites,n= 1059 individuals), and the population genetic structure was analysed using 13 microsatellite loci. Coupling empirical genetic data with demogenetic modelling based on a biophysical model simulating larval exchanges among scallop beds revealed a subtle genetic differentiation between south-west English populations and the rest of the English Channel, which was consistent with larval dispersal simulations. The present study provides a step forward in the understanding of great scallop population biology in the English Channel, underlining the fact that even in a context of potentially high gene flow and recent divergence times since the end of the last glacial maximum, weak but significant spatial genetic structure can be identified at a regional scale

    Development of microsatellite markers from 454 transcriptome derived sequences for the scallop Pecten maximus

    No full text
    Twelve microsatellite markers were developed for the scallop Pecten maximus. The markers were tested in three geographically diverse populations and all markers were polymorphic in all three populations. The mean number of alleles per locus ranged from 2 to 10.67 and the observed and expected heterozygosity ranged from 0.05 to 0.67 and 0.05 to 0.81 respectively. Some loci showed evidence of null alleles and an excess of homozygotes in some populations but 9 loci conformed to Hardy–Weinberg expectations. These new loci can be combined with previously published microsatellites to create a powerful suite of markers for genetic analyses
    corecore