116 research outputs found

    Cytotoxic T lymphocyte responses against melanocytes and melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitiligo is a common toxicity associated with immunotherapy for melanoma. Cytotoxic T lymphocytes (CTLs) against melanoma commonly target melanoma-associated antigens (MAAs) which are also expressed by melanocytes. To uncouple vitiligo from melanoma destruction, it is important to understand if CTLs can respond against melanoma and melanocytes at different levels.</p> <p>Methods</p> <p>To understand the dichotomous role of MAA-specific CTL, we characterized the functional reactivities of established CTL clones directed to MAAs against melanoma and melanocyte cell lines.</p> <p>Results</p> <p>CTL clones generated from melanoma patients were capable of eliciting MHC-restricted, MAA-specific lysis against melanocyte cell lines as well as melanoma cells. Among the tested HLA-A*0201-restricted CTL clones, melanocytes evoked equal to slightly higher degranulation and cytolytic responses as compared to melanoma cells. Moreover, MAA-specific T cells from vaccinated patients responded directly ex vivo to melanoma and melanocytes. Melanoma cells express slightly higher levels of MART-1 and gp100 than melanocytes as measured by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and immunohistochemistry.</p> <p>Conclusions</p> <p>Our data suggest that CTLs respond to melanoma and melanocytes equally in vitro and directly ex vivo.</p

    Quantitative, Architectural Analysis of Immune Cell Subsets in Tumor-Draining Lymph Nodes from Breast Cancer Patients and Healthy Lymph Nodes

    Get PDF
    Background: To date, pathological examination of specimens remains largely qualitative. Quantitative measures of tissue spatial features are generally not captured. To gain additional mechanistic and prognostic insights, a need for quantitative architectural analysis arises in studying immune cell-cancer interactions within the tumor microenvironment and tumor-draining lymph nodes (TDLNs). Methodology/Principal Findings: We present a novel, quantitative image analysis approach incorporating 1) multi-color tissue staining, 2) high-resolution, automated whole-section imaging, 3) custom image analysis software that identifies cell types and locations, and 4) spatial statistical analysis. As a proof of concept, we applied this approach to study the architectural patterns of T and B cells within tumor-draining lymph nodes from breast cancer patients versus healthy lymph nodes. We found that the spatial grouping patterns of T and B cells differed between healthy and breast cancer lymph nodes, and this could be attributed to the lack of B cell localization in the extrafollicular region of the TDLNs. Conclusions/Significance: Our integrative approach has made quantitative analysis of complex visual data possible. Our results highlight spatial alterations of immune cells within lymph nodes from breast cancer patients as an independent variable from numerical changes. This opens up new areas of investigations in research and medicine. Future application of this approach will lead to a better understanding of immune changes in the tumor microenvironment and TDLNs, and how they affect clinical outcome

    CD137 Is Expressed in Follicular Dendritic Cell Tumors and in Classical Hodgkin and T-Cell Lymphomas Diagnostic and Therapeutic Implications

    Get PDF
    CD137 (also known as 4-1BB and TNFRSF9) is a member of the tumor necrosis factor receptor superfamily. Originally identified as a costimulatory molecule expressed by activated T cells and NK cells, CD137 is also expressed by follicular dendritic cells, monocytes, mast cells, granulocytes, and endothelial cells. Anti-CD137 immunotherapy has recently shown promise as a treatment for solid tumors and lymphoid malignancies in preclinical models. We defined the expression of CD137 protein in both normal and neoplastic hematolymphoid tissue. CD137 protein is expressed by follicular dendritic cells in the germinal center and scattered paracortical T cells, but not by normal germinal-center B cells, bone marrow progenitor cells, or maturing thymocytes. CD137 protein is expressed by a select group of hematolymphoid tumors, including classical Hodgkin lymphoma, T-cell and NK/T-cell lymphomas, and follicular dendritic cells neoplasms. CD137 is a novel diagnostic marker of these tumors and suggests a possible target for tumor-directed antibody therapy

    Profile of Immune Cells in Axillary Lymph Nodes Predicts Disease-Free Survival in Breast Cancer

    Get PDF
    BACKGROUND: While lymph node metastasis is among the strongest predictors of disease-free and overall survival for patients with breast cancer, the immunological nature of tumor-draining lymph nodes is often ignored, and may provide additional prognostic information on clinical outcome. METHODS AND FINDINGS: We performed immunohistochemical analysis of 47 sentinel and 104 axillary (nonsentinel) nodes from 77 breast cancer patients with 5 y of follow-up to determine if alterations in CD4, CD8, and CD1a cell populations predict nodal metastasis or disease-free survival. Sentinel and axillary node CD4 and CD8 T cells were decreased in breast cancer patients compared to control nodes. CD1a dendritic cells were also diminished in sentinel and tumor-involved axillary nodes, but increased in tumor-free axillary nodes. Axillary node, but not sentinel node, CD4 T cell and dendritic cell populations were highly correlated with disease-free survival, independent of axillary metastasis. Immune profiling of ALN from a test set of 48 patients, applying CD4 T cell and CD1a dendritic cell population thresholds of CD4 ≥ 7.0% and CD1a ≥ 0.6%, determined from analysis of a learning set of 29 patients, provided significant risk stratification into favorable and unfavorable prognostic groups superior to clinicopathologic characteristics including tumor size, extent or size of nodal metastasis (CD4, p < 0.001 and CD1a, p < 0.001). Moreover, axillary node CD4 T cell and CD1a dendritic cell populations allowed more significant stratification of disease-free survival of patients with T1 (primary tumor size 2 cm or less) and T2 (5 cm or larger) tumors than all other patient characteristics. Finally, sentinel node immune profiles correlated primarily with the presence of infiltrating tumor cells, while axillary node immune profiles appeared largely independent of nodal metastases, raising the possibility that, within axillary lymph nodes, immune profile changes and nodal metastases represent independent processes. CONCLUSION: These findings demonstrate that the immune profile of tumor-draining lymph nodes is of novel biologic and clinical importance for patients with early stage breast cancer

    Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma

    Get PDF
    30siopenMelanoma prognosis is dictated by tumor-infiltrating lymphocytes, the migratory and functional behavior of which is guided by chemokine or cytokine gradients. Here, we retrospectively analyzed the expression patterns of 9 homing receptors (CCR/CXCR) in naive and memory CD4(+) and CD8(+) T lymphocytes in 57 patients with metastatic melanoma (MMel) with various sites of metastases to evaluate whether T cell CCR/CXCR expression correlates with intratumoral accumulation, metastatic progression, and/or overall survival (OS). Homing receptor expression on lymphocytes strongly correlated with MMel dissemination. Loss of CCR6 or CXCR3, but not cutaneous lymphocyte antigen (CLA), on circulating T cell subsets was associated with skin or lymph node metastases, loss of CXCR4, CXCR5, and CCR9 corresponded with lung involvement, and a rise in CCR10 or CD103 was associated with widespread dissemination. High frequencies of CD8(+)CCR9(+) naive T cells correlated with prolonged OS, while neutralizing the CCR9/CCL25 axis in mice stimulated tumor progression. The expansion of CLA-expressing effector memory CD8(+) T cells in response to a single administration of CTLA4 blockade predicted disease control at 3 months in 47 patients with MMel. Thus, specific CCR/CXCR expression patterns on circulating T lymphocytes may guide potential diagnostic and therapeutic approaches.openJacquelot N.; Enot D.P.; Flament C.; Vimond N.; Blattner C.; Pitt J.M.; Yamazaki T.; Roberti M.P.; Daillere R.; Vetizou M.; Poirier-Colame V.; Semeraro M.; Caignard A.; Slingluff C.L.; Sallusto F.; Rusakiewicz S.; Weide B.; Marabelle A.; Kohrt H.; Dalle S.; Cavalcanti A.; Kroemer G.; DI Giacomo A.M.; Maio M.; Wong P.; Yuan J.; Wolchok J.; Umansky V.; Eggermont A.; Zitvogel L.Jacquelot, N.; Enot, D. P.; Flament, C.; Vimond, N.; Blattner, C.; Pitt, J. M.; Yamazaki, T.; Roberti, M. P.; Daillere, R.; Vetizou, M.; Poirier-Colame, V.; Semeraro, M.; Caignard, A.; Slingluff, C. L.; Sallusto, F.; Rusakiewicz, S.; Weide, B.; Marabelle, A.; Kohrt, H.; Dalle, S.; Cavalcanti, A.; Kroemer, G.; DI Giacomo, A. M.; Maio, M.; Wong, P.; Yuan, J.; Wolchok, J.; Umansky, V.; Eggermont, A.; Zitvogel, L

    New models and online calculator for predicting non-sentinel lymph node status in sentinel lymph node positive breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current practice is to perform a completion axillary lymph node dissection (ALND) for breast cancer patients with tumor-involved sentinel lymph nodes (SLNs), although fewer than half will have non-sentinel node (NSLN) metastasis. Our goal was to develop new models to quantify the risk of NSLN metastasis in SLN-positive patients and to compare predictive capabilities to another widely used model.</p> <p>Methods</p> <p>We constructed three models to predict NSLN status: recursive partitioning with receiver operating characteristic curves (RP-ROC), boosted Classification and Regression Trees (CART), and multivariate logistic regression (MLR) informed by CART. Data were compiled from a multicenter Northern California and Oregon database of 784 patients who prospectively underwent SLN biopsy and completion ALND. We compared the predictive abilities of our best model and the Memorial Sloan-Kettering Breast Cancer Nomogram (Nomogram) in our dataset and an independent dataset from Northwestern University.</p> <p>Results</p> <p>285 patients had positive SLNs, of which 213 had known angiolymphatic invasion status and 171 had complete pathologic data including hormone receptor status. 264 (93%) patients had limited SLN disease (micrometastasis, 70%, or isolated tumor cells, 23%). 101 (35%) of all SLN-positive patients had tumor-involved NSLNs. Three variables (tumor size, angiolymphatic invasion, and SLN metastasis size) predicted risk in all our models. RP-ROC and boosted CART stratified patients into four risk levels. MLR informed by CART was most accurate. Using two composite predictors calculated from three variables, MLR informed by CART was more accurate than the Nomogram computed using eight predictors. In our dataset, area under ROC curve (AUC) was 0.83/0.85 for MLR (n = 213/n = 171) and 0.77 for Nomogram (n = 171). When applied to an independent dataset (n = 77), AUC was 0.74 for our model and 0.62 for Nomogram. The composite predictors in our model were the product of angiolymphatic invasion and size of SLN metastasis, and the product of tumor size and square of SLN metastasis size.</p> <p>Conclusion</p> <p>We present a new model developed from a community-based SLN database that uses only three rather than eight variables to achieve higher accuracy than the Nomogram for predicting NSLN status in two different datasets. </p

    Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma

    Get PDF
    Melanoma prognosis is dictated by tumor-infiltrating lymphocytes, the migratory and functional behavior of which is guided by chemokine or cytokine gradients. Here, we retrospectively analyzed the expression patterns of 9 homing receptors (CCR/CXCR) in naive and memory CD4+ and CD8+ T lymphocytes in 57 patients with metastatic melanoma (MMel) with various sites of metastases to evaluate whether T cell CCR/CXCR expression correlates with intratumoral accumulation, metastatic progression, and/or overall survival (OS). Homing receptor expression on lymphocytes strongly correlated with MMel dissemination. Loss of CCR6 or CXCR3, but not cutaneous lymphocyte antigen (CLA), on circulating T cell subsets was associated with skin or lymph node metastases, loss of CXCR4, CXCR5, and CCR9 corresponded with lung involvement, and a rise in CCR10 or CD103 was associated with widespread dissemination. High frequencies of CD8+CCR9+ naive T cells correlated with prolonged OS, while neutralizing the CCR9/CCL25 axis in mice stimulated tumor progression. The expansion of CLA-expressing effector memory CD8+ T cells in response to a single administration of CTLA4 blockade predicted disease control at 3 months in 47 patients with MMel. Thus, specific CCR/CXCR expression patterns on circulating T lymphocytes may guide potential diagnostic and therapeutic approaches
    corecore