205 research outputs found

    Evaluating the analgesic effect of Cucurbita maxima Duch hydro-alcoholic extract in rats

    Get PDF
    Background and aims: Cucurbita maxima Duch (CMD) is used as sedative for tooth and ear pain, but its analgesic effect has not been research in experimental studies. The aim of this study was to investigate the analgesic effect of hydro-alcoholic extract of CMD was studied using formalin model in rats. Methods: In this experimental study, 60 Rats were randomly divided into 6 equal groups. Control group was injected distilled water and three experimental groups were injected CMD extracts (50, 100 and 200 mg/kg). Group 5 received ibuprofen and group 6 received naloxone with the most effective dose of the extract. Extract or drugs were injected 15 minutes before formalin injection. The responses of animals to pain were recorded for 30 min. after the formalin injection. Responses of first 0-5 min. were considered as acute pain and responses of 15-30 min. as chronic pain. Results: CRM extracts reduced acute pain in doses of 100 and 200 mg/kg (P<0.001). In addition, the extract decreased chronic pain in all used concentrations compared to the control group (P<0.001). Naloxone inhibited analgesic effect of the extract (P<0.05). Conclusion: CRM extracts reduce acute and chronic pains in formalin test through opioid system and it might be used as an analgesic drug

    The effect of nutritional behavior training of mothers on eating habits of toddlers in Gonbabd kindergardens in 2019

    Get PDF
    Introduction Children with the age of 12 to 36 months are in a critical period in terms of nutritional behavior development. The aim of this study was to determine the effect of nutritional behaviour training of mothers on the eating habits of their toddler children in Gonbad kindergartens. Material and Methods This experimental study with pre-test and post-test with two intervention and control groups was performed on 90 mothers of 12 to 36month-old kindergartens in Gonbad city in Golestan province using simple random sampling method. In the intervention group, nutritional behavior training was conducted during eight sessions 60minute. The research tool was demographic questionnaire and feeding problem questionnaire. Data were analyzed with SPSS version 25 by running the chi-square test, fisher test, independent t-test, and covariance analysis at the sig- nificant level of 0.05. Results The mean of eating habits before intervention was 15.93±7.35 in intervention group and 17.76±8.20 in control group. The mean of eating habits after interven- tion was 8.42±4.64 in the intervention group and 14.71±7.37 in the control group .Comparing the eating habits of children before the intervention showed no sig- nificant difference between the two groups (P=0.32). However, comparison of eating habits after the interven- tion showed a significant difference between the two groups (P<0.001). Conclusion As mothers become more aware of the toddler's nutri- tional behaviors, their behaviors in regard to the toddlers’ nutrition improved during feeding time. Also, conflicts between mothers and toddlers reduced during this period. Thus, we can reduce toddlers’ nutritional problems by ed- ucating their mothers

    Probing hot gas around luminous red galaxies through the Sunyaev-Zel'dovich effect

    Get PDF
    We construct the mean thermal Sunyaev-Zel'dovich (tSZ) Comptonization y profile around Luminous Red Galaxies (LRGs) in the redshift range 0.16 < z < 0.47 from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) using the Planck y map. The mean central tSZ signal for the full sample is y ~ 1.8 * 10^(-7) and we detect tSZ emission out to ~30 arcmin, which is well beyond the 10 arcmin angular resolution of the y map and well beyond the virial radii of the LRGs. We compare the measured profile with predictions from the cosmo-OWLS suite of cosmological hydrodynamical simulations. This comparison agrees well for models that include feedback from active galactic nuclei (AGN), but not with hydrodynamic models without this energetic feedback mechanism. This suggests that an additional heating mechanism is required over SNe feedback and star formation to explain the y data profile. We also compare our results with predictions based on the halo model with a universal pressure profile (UPP) giving the y signal. The predicted profile is consistent with the data, but only if we account for the clustering of haloes via a two-halo term and if halo masses are estimated using the mean stellar-to-halo mass (SHM) relation of Coupon et al. (2015) or Wang et al.(2016) estimated from gravitational lensing measurements. We also discuss the importance of scatter in the SHM relation on the model predictions

    Multiwavelength scaling relations in galaxy groups: a detailed comparison of GAMA and KiDS observations to BAHAMAS simulations

    Get PDF
    We study the scaling relations between the baryonic content and total mass of groups of galaxies, as these systems provide a unique way to examine the role of non-gravitational processes in structure formation. Using Planck and ROSAT data, we conduct detailed comparisons of the stacked thermal Sunyaev-Zel’dovich (tSZ) and X-ray scaling relations of galaxy groups found in the Galaxy And Mass Assembly (GAMA) survey and the BAHAMAS hydrodynamical simulation. We use weak gravitational lensing data from the Kilo Degree Survey to determine the average halo mass of the studied systems. We analyse the simulation in the same way, using realistic weak lensing, X-ray, and tSZ synthetic observations. Furthermore, to keep selection biases under control, we employ exactly the same galaxy selection and group identification procedures to the observations and simulation. Applying this comparison, we find that the simulations reproduce the richness, size, and stellar mass functions of GAMA groups, as well as the stacked weak lensing and tSZ signals in bins of group stellar mass. However, the simulations predict X-ray luminosities that are higher than observed for this optically selected group sample. As the same simulations were previously shown to match the luminosities of X-ray-selected groups, this suggests that X-ray-selected systems may form a biased subset. Finally, we demonstrate that our observational processing of the X-ray and tSZ signals is free of significant biases. We find that our optical group selection procedure has, however, some room for improvement

    CFHTLenS and RCSLenS cross-correlation with Planck lensing detected in fourier and configuration space

    Get PDF
    We measure the cross-correlation signature between the Planck cosmic microwave background (CMB) lensing map and the weak lensing observations from both the Red-sequence Cluster Lensing Survey and the Canada–France–Hawaii Telescope Lensing Survey. In addition to a Fourier analysis, we include the first configuration-space detection, based on the estimators 〈κCMBκgal〉 and 〈κCMBγt〉. Combining 747.2 deg2 from both surveys, we find a detection significance that exceeds 4.2σ in both Fourier- and configuration-space analyses. Scaling the predictions by a free parameter A, we obtain APlanckCFHT=0.68±0.31 and APlanckRCS=1.31±0.33⁠. In preparation for the next generation of measurements similar to these, we quantify the impact of different analysis choices on these results. First, since none of these estimators probes the exact same dynamical range, we improve our detection by combining them. Secondly, we carry out a detailed investigation on the effect of apodization, zero-padding and mask multiplication, validated on a suite of high-resolution simulations, and find that the latter produces the largest systematic bias in the cosmological interpretation. Finally, we show that residual contamination from intrinsic alignment and the effect of photometric redshift error are both largely degenerate with the characteristic signal from massive neutrinos, however the signature of baryon feedback might be easier to distinguish. The three lensing data sets are publicly available

    A new approach to cosmological perturbations in f(R) models

    Full text link
    We propose an analytic procedure that allows to determine quantitatively the deviation in the behavior of cosmological perturbations between a given f(R) modified gravity model and a LCDM reference model. Our method allows to study structure formation in these models from the largest scales, of the order of the Hubble horizon, down to scales deeply inside the Hubble radius, without employing the so-called "quasi-static" approximation. Although we restrict our analysis here to linear perturbations, our technique is completely general and can be extended to any perturbative order.Comment: 21 pages, 2 figures; Revised version according to reviewer's suggestions; Typos corrected; Added Reference

    CFHTLenS and RCSLenS cross-correlation with Planck lensing detected in fourier and configuration space

    Get PDF
    We measure the cross-correlation signature between the Planck cosmic microwave background (CMB) lensing map and the weak lensing observations from both the Red-sequence Cluster Lensing Survey and the Canada–France–Hawaii Telescope Lensing Survey. In addition to a Fourier analysis, we include the first configuration-space detection, based on the estimators 〈κCMBκgal〉 and 〈κCMBγt〉. Combining 747.2 deg2 from both surveys, we find a detection significance that exceeds 4.2σ in both Fourier- and configuration-space analyses. Scaling the predictions by a free parameter A, we obtain APlanckCFHT=0.68±0.31 and APlanckRCS=1.31±0.33⁠. In preparation for the next generation of measurements similar to these, we quantify the impact of different analysis choices on these results. First, since none of these estimators probes the exact same dynamical range, we improve our detection by combining them. Secondly, we carry out a detailed investigation on the effect of apodization, zero-padding and mask multiplication, validated on a suite of high-resolution simulations, and find that the latter produces the largest systematic bias in the cosmological interpretation. Finally, we show that residual contamination from intrinsic alignment and the effect of photometric redshift error are both largely degenerate with the characteristic signal from massive neutrinos, however the signature of baryon feedback might be easier to distinguish. The three lensing data sets are publicly available

    RCSLenS: The Red Cluster Sequence Lensing Survey

    Get PDF
    We present the Red Cluster Sequence Lensing Survey (RCSLenS), an application of the methods developed for the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) to the ∼785 deg2, multi-band imaging data of the Red-sequence Cluster Survey 2. This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts, we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total, we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7 deg2 and down to a magnitude limit of r ∼ 24.5 is 8.1 galaxies per arcmin2 (weighted: 5.5 arcmin−2) distributed over 14 patches on the sky. Photometric redshifts based on four-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg2. We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release

    RCSLenS: The Red Cluster Sequence Lensing Survey

    Get PDF
    We present the Red Cluster Sequence Lensing Survey (RCSLenS), an application of the methods developed for the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) to the ∼785 deg2, multi-band imaging data of the Red-sequence Cluster Survey 2. This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts, we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total, we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7 deg2 and down to a magnitude limit of r ∼ 24.5 is 8.1 galaxies per arcmin2 (weighted: 5.5 arcmin−2) distributed over 14 patches on the sky. Photometric redshifts based on four-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg2. We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release
    corecore