1,493 research outputs found

    Phase locking below rate threshold in noisy model neurons

    Get PDF
    The property of a neuron to phase-lock to an oscillatory stimulus before adapting its spike rate to the stimulus frequency plays an important role for the auditory system. We investigate under which conditions neurons exhibit this phase locking below rate threshold. To this end, we simulate neurons employing the widely used leaky integrate-and-fire (LIF) model. Tuning parameters, we can arrange either an irregular spontaneous or a tonic spiking mode. When the neuron is stimulated in both modes, a significant rise of vector strength prior to a noticeable change of the spike rate can be observed. Combining analytic reasoning with numerical simulations, we trace this observation back to a modulation of interspike intervals, which itself requires spikes to be only loosely coupled. We test the limits of this conception by simulating an LIF model with threshold fatigue, which generates pronounced anticorrelations between subsequent interspike intervals. In addition we evaluate the LIF response for harmonic stimuli of various frequencies and discuss the extension to more complex stimuli. It seems that phase locking below rate threshold occurs generically for all zero mean stimuli. Finally, we discuss our findings in the context of stimulus detection

    Editorial: Molecular intricacies of Trichoderma-plant-pathogen interactions

    Get PDF
    Trichoderma spp. are widely used as plant disease biocontrol agents around the world (Guzmán-Guzmán, 2019). Initial research on Trichoderma focused on their biocontrol ability mediated by mycoparasitism and antibiosis. Trichoderma spp. are known for direct antagonistic action on plant pathogenic fungi, and more recently for indirect suppression via induced defense. Thus, with the discovery that Trichoderma spp. can internally colonize roots and invoke defense responses in plants, attention of the research community largely shifted toward understanding how the plants and Trichoderma communicate with each other leading to a symbiosis-like relationship (Harman et al., 2004; Hohmann, 2012). At the initial attachment stage, Trichoderma spp. are known to secrete hydrophobins that could aid in adhesion to the root surface (Viterbo and Chet, 2006). Following attachment, secretion of plant cell wall degrading enzymes like pectate lyase (Morán Diez et al., 2009) and swollenin (Brotman et al., 2008; Andberg et al., 2015; Cosgrove, 2017) could facilitate penetration. It is important to note that penetration into the root is limited, and indeed genes encoding plant cell wall degrading enyzymes are downregulated early in root colonization (Estrada-Rivera et al., 2020). This occurs along with high representation of glycosyl hydrolases in the secretome (Nogueira-Lopez et al., 2018). Soluble enzymes may still be present in the secretome after the corresponding transcripts decrease, highlighting the need for obtaining well-resolved time course experiments for both gene expression and protein abundance during early colonization events. Trichoderma fungi are known to secrete a large number of small secreted cysteine-rich proteins (SSCPs) that might be involved in modulation of plant defense, fine tuning of which may be responsible for the outcome of this association. Though not clearly established, it seems possible that Trichoderma SSCPs initially suppress plant defense, and once the colonization is complete, induces plant defense to enter into a symbiosis-like relationship. Unlike mycorrhiza, there seems to exist no specificity in Trichoderma-plant association, which appears to be quite universal. For example, AM mycorrhizal fungi cannot colonize cruciferous roots exhibiting a level of specificity, but Trichoderma can effectively colonize such roots, indicating a generalist type of lifestyle

    Enhancement of Stochastic Resonance in distributed systems due to a selective coupling

    Full text link
    Recent massive numerical simulations have shown that the response of a "stochastic resonator" is enhanced as a consequence of spatial coupling. Similar results have been analytically obtained in a reaction-diffusion model, using "nonequilibrium potential" techniques. We now consider a field-dependent diffusivity and show that the "selectivity" of the coupling is more efficient for achieving stochastic-resonance enhancement than its overall value in the constant-diffusivity case.Comment: 10 pgs (RevTex), 4 figures, submitted to Phys.Rev.Let

    Stochastic resonance between dissipative structures in a bistable noise-sustained dynamics

    Get PDF
    We study an extended system that without noise shows a monostable dynamics, but when submitted to an adequate multiplicative noise, an effective bistable dynamics arise. The stochastic resonance between the attractors of the \textit{noise-sustained dynamics} is investigated theoretically in terms of a two-state approximation. The knowledge of the exact nonequilibrium potential allows us to obtain the output signal-to-noise ratio. Its maximum is predicted in the symmetric case for which both attractors have the same nonequilibrium potential value.Comment: RevTex, 13 pages, 6 figures, accepted in Physical Review

    Refining the criteria for immediate total-body CT after severe trauma

    Get PDF
    Objectives Initial trauma care could potentially be improved when conventional imaging and selective CT scanning is omitted and replaced by immediate total-body CT (iTBCT) scanning. Because of the potentially increased radiation exposure by this diagnostic approach, proper selection of the severely injured patients is mandatory. Methods In the REACT-2 trial, severe trauma patients were randomized to iTBCT or conventional imaging and selective CT based on predefined criteria regarding compromised vital parameters, clinical suspicion of severe injuries, or high-risk trauma mechanisms in five trauma centers. By logistic regression analysis with backward selection on the 15 study inclusion criteria, a revised set of criteria was derived and subsequently tested for prediction of severe injury and shifts in radiation exposure. Results In total, 1083 patients were enrolled with median ISS of 20 (IQR 9-29) and median GCS of 13 (IQR 3-15). Backward logistic regression resulted in a revised set consisting of nine original and one adjusted criteria. Positive predictive value improved from 76% (95% CI 74-79%) to 82% (95% CI 80-85%). Sensitivity decreased by 9% (95% CI 7-11%). The area under the receiver operating characteristics curve remained equal and was 0.80 (95% CI 0.77-0.83), original set 0.80 (95% CI 0.77-0.83). The revised set retains 8.78 mSv (95% CI 6.01-11.56) for 36% of the non-severely injured patients. Conclusions Selection criteria for iTBCT can be reduced from 15 to 10 clinically criteria. This improves the positive predictive value for severe injury and reduces radiation exposure for less severely injured patients

    Growth aspirations and social capital:young firms in a post-conflict environment

    Get PDF
    This article explores the growth aspirations of owners and managers of young firms in a post-conflict economy by focusing on social capital. It treats social capital as a multidimensional, multilevel phenomenon, studying the effects of discussion network characteristics, trust in institutions, generalised trust in people and local ethnic pluralism. We argue that in a post-conflict country, ethnic pluralism is indicative of local norms of tolerance towards experimentation and risk taking which support growth aspirations. It also distinguishes between the aspirations of hired managers and owners-managers. The empirical counterpart and hypotheses testing rely on survey evidence drawn from young businesses in Bosnia and Herzegovina

    Mediterranean biodiversity gradient initiated by basin restriction

    Get PDF
    Physical connectivity between marine basins facilitates population exchange and hence controls biodiversity. The Mediterranean Sea is a semi-restricted basin with only a small two-way connection to the global ocean, and it is a region heavily impacted by climate change and biological invasions today. The massive migration of non-indigenous species into the basin through the Suez Canal, driven and enabled by climate warming, is drastically changing Mediterranean biodiversity. Understanding therefore the origin and cause(s) of pre-existing biodiversity patterns is crucial for predicting future impacts of climate change. Mediterranean biodiversity exhibits a west-to-east decreasing gradient in terms of species richness, but the processes that resulted in this gradient have only been hypothesized. By examining the fossil record, we provide evidence that this gradient developed 5.33 million years ago at the end of the Messinian Salinity Crisis, and it was therefore caused by the re-population of the basin by marine species with a dominating western source at the Mediterranean¿Atlantic gateway

    Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents : an in vitro study

    Get PDF
    Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state
    corecore