

EGU23-17215, updated on 01 Feb 2024 https://doi.org/10.5194/egusphere-egu23-17215 EGU General Assembly 2023 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Mediterranean biodiversity gradient initiated by basin restriction

Konstantina Agiadi¹, Niklas Hohmann², Elsa Gliozzi³, Danae Thivaiou⁴, Alberto Collareta⁵, Francesca Bosellini⁶, Giovanni Bianucci⁵, Laurent Londeix⁷, Francesca Bulian⁸, Francesca Lozar⁹, Alan Maria Mancini⁹, Stefano Dominici¹⁰, Pierre Moissette⁴, Ildefonso Bajo Campos¹¹, Enrico Borghi¹², George Kontakiotis⁴, Stergios Zarkogiannis¹³, Mathias Harzhauser¹⁴, Angelo Camerlenghi¹⁵, and Daniel Garcia-Castellanos¹⁶ ¹University of Vienna ²Utrecht University ³Università Roma 3 ⁴National and Kapodistrian University of Athens ⁵Università di Pisa ⁶Università degli Studi di Modena e Reggio Emilia ⁷Université de Bordeaux ⁸University of Groningen ⁹University of Torino ¹⁰Universita degli Studi Firenze ¹¹Museo de Alcalá de Guadaíra ¹²Società Reggiana di Scienza Naturali ¹³University of Oxford ¹⁴Vienna Natural History Museum ¹⁵OGS Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

¹⁶Geosciences Barcelona, CSIC

Physical connectivity between marine basins facilitates population exchange and hence controls biodiversity. The Mediterranean Sea is a semi-restricted basin with only a small two-way connection to the global ocean, and it is a region heavily impacted by climate change and biological invasions today. The massive migration of non-indigenous species into the basin through the Suez Canal, driven and enabled by climate warming, is drastically changing Mediterranean biodiversity. Understanding therefore the origin and cause(s) of pre-existing biodiversity patterns is crucial for predicting future impacts of climate change. Mediterranean biodiversity exhibits a west-to-east decreasing gradient in terms of species richness, but the processes that resulted in this gradient have only been hypothesized. By examining the fossil record, we provide evidence that this gradient developed 5.33 million years ago at the end of the Messinian Salinity Crisis, and it was therefore caused by the re-population of the basin by marine species with a dominating western source at the Mediterranean–Atlantic gateway.