191 research outputs found

    Loss-of-Function Variants in MYCBP2 Cause Neurobehavioural Phenotypes and Corpus Callosum Defects

    Get PDF
    The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD)

    Electron Transfer from Cyt b559 and Tyrosine-D to the S2 and S3 states of the water oxidizing complex in Photosystem II at Cryogenic Temperatures

    Get PDF
    The Mn4CaO5 cluster of photosystem II (PSII) catalyzes the oxidation of water to molecular oxygen through the light-driven redox S-cycle. The water oxidizing complex (WOC) forms a triad with Tyrosine(Z) and P-680, which mediates electrons from water towards the acceptor side of PSII. Under certain conditions two other redox-active components, Tyrosine(D) (Y-D) and Cytochrome b (559) (Cyt b (559)) can also interact with the S-states. In the present work we investigate the electron transfer from Cyt b (559) and Y-D to the S-2 and S-3 states at 195 K. First, Y-D (aEuro cent) and Cyt b (559) were chemically reduced. The S-2 and S-3 states were then achieved by application of one or two laser flashes, respectively, on samples stabilized in the S-1 state. EPR signals of the WOC (the S-2-state multiline signal, ML-S-2), Y-D (aEuro cent) and oxidized Cyt b (559) were simultaneously detected during a prolonged dark incubation at 195 K. During 163 days of incubation a large fraction of the S-2 population decayed to S-1 in the S-2 samples by following a single exponential decay. Differently, S-3 samples showed an initial increase in the ML-S-2 intensity (due to S-3 to S-2 conversion) and a subsequent slow decay due to S-2 to S-1 conversion. In both cases, only a minor oxidation of Y-D was observed. In contrast, the signal intensity of the oxidized Cyt b (559) showed a two-fold increase in both the S-2 and S-3 samples. The electron donation from Cyt b (559) was much more efficient to the S-2 state than to the S-3 state

    Predominant and novel de novo variants in 29 individuals with ALG13 deficiency: Clinical description, biomarker status, biochemical analysis, and treatment suggestions

    Get PDF
    Asparagine-linked glycosylation 13 homolog (ALG13) encodes a nonredundant, highly conserved, X-linked uridine diphosphate (UDP)-N-acetylglucosaminyltransferase required for the synthesis of lipid linked oligosaccharide precursor and proper N-linked glycosylation. De novo variants in ALG13 underlie a form of early infantile epileptic encephalopathy known as EIEE36, but given its essential role in glycosylation, it is also considered a congenital disorder of glycosylation (CDG), ALG13-CDG. Twenty-four previously reported ALG13-CDG cases had de novo variants, but surprisingly, unlike most forms of CDG, ALG13-CDG did not show the anticipated glycosylation defects, typically detected by altered transferrin glycosylation. Structural homology modeling of two recurrent de novo variants, p.A81T and p.N107S, suggests both are likely to impact the function of ALG13. Using a corresponding ALG13-deficient yeast strain, we show that expressing yeast ALG13 with either of the highly conserved hotspot variants rescues the observed growth defect, but not its glycosylation abnormality. We present molecular and clinical data on 29 previously unreported individuals with de novo variants in ALG13. This more than doubles the number of known cases. A key finding is that a vast majority of the individuals presents with West syndrome, a feature shared with other CDG types. Among these, the initial epileptic spasms best responded to adrenocorticotropic hormone or prednisolone, while clobazam and felbamate showed promise for continued epilepsy treatment. A ketogenic diet seems to play an important role in the treatment of these individuals.Fil: Ng, Bobby G.. Sanford Burnham Prebys Medical Discovery Institute; Estados UnidosFil: Eklund, Erik A.. Sanford Burnham Prebys Medical Discovery Institute; Estados Unidos. Lund University; SueciaFil: Shiryaev, Sergey A.. Sanford Burnham Prebys Medical Discovery Institute; Estados UnidosFil: Dong, Yin Y.. University of Oxford; Reino UnidoFil: Abbott, Mary Alice. University of Massachusetts Medical School; Estados UnidosFil: Asteggiano, Carla Gabriela. Universidad Católica de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Medicina. Centro de Estudios de las Metabolopatías Congénitas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Bamshad, Michael J.. University of Washington; Estados UnidosFil: Barr, Eileen. University of Emory; Estados UnidosFil: Bernstein, Jonathan A.. University of Stanford; Estados UnidosFil: Chelakkadan, Shabeed. Monash Children's Hospital; AustraliaFil: Christodoulou, John. Sydney Medical School; Australia. University of Melbourne; AustraliaFil: Chung, Wendy K.. Columbia University; Estados UnidosFil: Ciliberto, Michael A.. University of Iowa; Estados UnidosFil: Cousin, Janice. National Human Genome Research Institute ; Estados UnidosFil: Gardiner, Fiona. University of Melbourne; AustraliaFil: Ghosh, Suman. University of Florida; Estados UnidosFil: Graf, William D.. University of Connecticut; Estados UnidosFil: Grunewald, Stephanie. University College London; Estados UnidosFil: Hammond, Katherine. University of Alabama at Birmingahm; Estados UnidosFil: Hauser, Natalie S.. Inova, Fairfax Hospital Falls Church; Estados UnidosFil: Hoganson, George E.. University Of Illinois At Chicago; Estados UnidosFil: Houck, Kimberly M.. Baylor College of Medicine; Estados UnidosFil: Kohler, Jennefer N.. University of Stanford; Estados UnidosFil: Morava, Eva. Mayo Clinic; Estados UnidosFil: Larson, Austin A.. University Of Colorado Anschutz Medical Campus.; Estados UnidosFil: Liu, Pengfei. Baylor Genetics; Estados Unidos. Baylor College Of Medicine; Estados UnidosFil: Madathil, Sujana. University of Iowa; Estados UnidosFil: McCormack, Colleen. University of Stanford; Estados UnidosFil: Meeks, Naomi J.L.. University Of Colorado Anschutz Medical Campus.; Estados UnidosFil: Papazoglu, Gabriela Magali. Universidad Nacional de Córdoba. Facultad de Medicina. Centro de Estudios de las Metabolopatías Congénitas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin

    Formal Reduction Potential of 3,5-Difluorotyrosine in a Structured Protein: Insight into Multistep Radical Transfer

    Get PDF
    The reversible Y–O•/Y–OH redox properties of the α[subscript 3]Y model protein allow access to the electrochemical and thermodynamic properties of 3,5-difluorotyrosine. The unnatural amino acid has been incorporated at position 32, the dedicated radical site in α[subscript 3]Y, by in vivo nonsense codon suppression. Incorporation of 3,5-difluorotyrosine gives rise to very minor structural changes in the protein scaffold at pH values below the apparent pK (8.0 ± 0.1) of the unnatural residue. Square-wave voltammetry on α[subscript 3](3,5)F[subscript 2]Y provides an E°′(Y–O•/Y–OH) of 1026 ± 4 mV versus the normal hydrogen electrode (pH 5.70 ± 0.02) and shows that the fluoro substitutions lower the E°′ by −30 ± 3 mV. These results illustrate the utility of combining the optimized α[subscript 3]Y tyrosine radical system with in vivo nonsense codon suppression to obtain the formal reduction potential of an unnatural aromatic residue residing within a well-structured protein. It is further observed that the protein E°′ values differ significantly from peak potentials derived from irreversible voltammograms of the corresponding aqueous species. This is notable because solution potentials have been the main thermodynamic data available for amino acid radicals. The findings in this paper are discussed relative to recent mechanistic studies of the multistep radical-transfer process in Escherichia coli ribonucleotide reductase site-specifically labeled with unnatural tyrosine residues.National Institutes of Health (U.S.) (Grant GM29595

    Spectroscopic Studies of the Iron and Manganese Reconstituted Tyrosyl Radical in Bacillus Cereus Ribonucleotide Reductase R2 Protein

    Get PDF
    Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g1-value of 2.0090 for the tyrosyl radical was extracted. This g1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν7a = 1500 cm−1) was found to be insensitive to deuterium-oxide exchange. Additionally, the 18O-sensitive Fe-O-Fe symmetric stretching (483 cm−1) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053–33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher activity

    Mudd’s disease (MAT I/III deficiency): a survey of data for MAT1A homozygotes and compound heterozygotes

    Full text link

    Paleontology of leaf beetles

    Full text link
    `The rate of evolution in any large group is not uniform; there are periods of relatise stability, and periods of comparatively rapid change.' Cockerell and LeVeque, 1931 To Yenli Ych, my beloved wife, a most wonderful person! The fossil record of the Chrysomelidae can be tentatively traced back to the late Paleozoic to early Mesozoic Triassic. Mesozoic records at least 9 subfamilies, 19 genera, and 35 species, are represented by the Sagrinae, the exclusively Mesozoic Proto scelinae, Clytrinae, Cryptocephalinae, Eumolpinae, Chrysomelinae. Galerucinac, Alticinae, and Cassidinae. Cenozoic records at least 12 subfamilies- 63 % of the extant- 12! genera, and 325 species, include the same extant subfamilies as well as the Donaciinae, Zeugophorinae, Criocerinae, and Hispinae and can be frequently identified to genus, especially if preserved in amber. Quaternary records are often identified to extant species. tn total, at least t3! genera about 4 % of total extant, and 357 species < 1 % have been reported. At least, 24 genera <1 % of the extant seem to be extinct. Although reliable biological information associated with the fossil chrysomelids is very scarce, it seems that most of the modern host-plant associations were established, at least, in the late Mesozoic to early Cenozoic. As a whole, stasis seems to be the general rule of the chrysomelid fossil record. Together with other faunal elements, chrysomelids, especially donaciines, have been used as biogeographic and paleoclimatological indicators in the Holocene. I
    corecore