271 research outputs found

    Nonexpanding impulsive gravitational waves with an arbitrary cosmological constant

    Get PDF
    Exact solutions for nonexpanding impulsive waves in a background with nonzero cosmological constant are constructed using a `cut and paste' method. These solutions are presented using a unified approach which covers the cases of de Sitter, anti-de Sitter and Minkowski backgrounds. The metrics are presented in continuous and distributional forms, both of which are conformal to the corresponding metrics for impulsive pp-waves, and for which the limit as Λ0\Lambda\to 0 can be made explicitly.Comment: 5 pages, LaTeX. To appear in Phys. Lett.

    First-order cosmological phase transitions in the radiation dominated era

    Full text link
    We consider first-order phase transitions of the Universe in the radiation-dominated era. We argue that in general the velocity of interfaces is non-relativistic due to the interaction with the plasma and the release of latent heat. We study the general evolution of such slow phase transitions, which comprise essentially a short reheating stage and a longer phase equilibrium stage. We perform a completely analytical description of both stages. Some rough approximations are needed for the first stage, due to the non-trivial relations between the quantities that determine the variation of temperature with time. The second stage, instead, is considerably simplified by the fact that it develops at a constant temperature, close to the critical one. Indeed, in this case the equations can be solved exactly, including back-reaction on the expansion of the Universe. This treatment also applies to phase transitions mediated by impurities. We also investigate the relations between the different parameters that govern the characteristics of the phase transition and its cosmological consequences, and discuss the dependence of these parameters with the particle content of the theory.Comment: 38 pages, 3 figures; v2: Minor changes, references added; v3: several typos correcte

    Sedimentary Signatures of Persistent Subglacial Meltwater Drainage From Thwaites Glacier, Antarctica

    Get PDF
    Subglacial meltwater drainage can enhance localized melting along grounding zones and beneath the ice shelves of marine-terminating glaciers. Efforts to constrain the evolution of subglacial hydrology and the resulting influence on ice stability in space and on decadal to millennial timescales are lacking. Here, we apply sedimentological, geochemical, and statistical methods to analyze sediment cores recovered offshore Thwaites Glacier, West Antarctica to reconstruct meltwater drainage activity through the pre-satellite era. We find evidence for a long-lived subglacial hydrologic system beneath Thwaites Glacier and indications that meltwater plumes are the primary mechanism of sedimentation seaward of the glacier today. Detailed core stratigraphy revealed through computed tomography scanning captures variability in drainage styles and suggests greater magnitudes of sediment-laden meltwater have been delivered to the ocean in recent centuries compared to the past several thousand years. Fundamental similarities between meltwater plume deposits offshore Thwaites Glacier and those described in association with other Antarctic glacial systems imply widespread and similar subglacial hydrologic processes that occur independently of subglacial geology. In the context of Holocene changes to the Thwaites Glacier margin, it is likely that subglacial drainage enhanced submarine melt along the grounding zone and amplified ice-shelf melt driven by oceanic processes, consistent with observations of other West Antarctic glaciers today. This study highlights the necessity of accounting for the influence of subglacial hydrology on grounding-zone and ice-shelf melt in projections of future behavior of the Thwaites Glacier ice margin and marine-based glaciers around the Antarctic continent

    History of Anvers-Hugo Trough, western Antarctic Peninsula shelf, since the Last Glacial Maximum. Part I: Deglacial history based on new sedimentological and chronological data

    Get PDF
    Reconstructing the advance and retreat of past ice sheets provides important long-term context for recent change(s) and enables us to better understand ice sheet responses to forcing mechanisms and external boundary conditions that regulate grounding line retreat. This study applies various radiocarbon dating techniques, guided by a detailed sedimentological analyses, to reconstruct the glacial history of Anvers-Hugo Trough (AHT), one of the largest bathymetric troughs on the western Antarctic Peninsula (WAP) shelf. Existing records from AHT indicate that the expanded Antarctic Peninsula Ice Sheet (APIS) advanced to, or close to, the continental shelf edge during the Last Glacial Maximum (LGM; 23-19 cal kyr BP [ = calibrated kiloyears before present]), with deglaciation of the outer shelf after ∼16.3 cal kyr BP. Our new chronological data show that the APIS had retreated to the middle shelf by ∼15.7 cal kyr BP. Over this 600-year interval, two large grounding-zone wedges (GZW) were deposited across the middle (GZW2) and inner shelf (GZW3), suggesting that their formation occurred on centennial rather than millennial timescales. Expanded sequences of sub-ice shelf sediments occur seaward of the inner GZW3, which suggests that the grounding line remained stationary for a prolonged period over the middle shelf. Grounding-line retreat rates indicate faster retreat across the outer to middle shelf compared to retreat across the middle to inner shelf. We suggest that variable retreat rates relate to the broad-scale morphology of the trough, which is characterised by a relatively smooth, retrograde seabed on the outer to middle shelf and rugged morphology with a locally landward shallowing bed and deep basin on the inner shelf. A slowdown in retreat rate could also have been promoted by convergent ice flow over the inner shelf and the availability of pinning points associated with bathymetric highs around Anvers Island and Hugo Island

    Anvers-Hugo Trough palaeo-ice stream, Antarctic Peninsula: geomorphological evidence for the role of subglacial water in facilitating ice stream flow

    Get PDF
    We will present new multibeam bathymetry data that make the Anvers-Hugo Trough west of the Antarctic Peninsula one of the most completely surveyed palaeo-ice stream pathways in Antarctica. We interpret landforms revealed by these data as indicating that subglacial water availability played an important role in facilitating ice stream flow in the trough during late Quaternary glacial periods. Specifically, we observe a set of northward-shoaling valleys that are eroded into the upstream edge of a sedimentary basin, extend northwards from a zone containing landforms typical of erosion by subglacial water flow, and coincide spatially with the onset of mega-scale glacial lineations. Water was likely supplied to the ice stream bed episodically as a result of outbursts from a subglacial lake previously hypothesized to have been located in the Palmer Deep basin on the inner continental shelf. In a palaeo-ice stream confluence area, close juxtaposition of mega-scale glacial lineations with landforms that are characteristic of slow, dry-based ice flow, suggests that water availability was also an important control on the lateral extent of these palaeo-ice streams. These interpretations are consistent with the hypothesis that subglacial lakes or areas of elevated geothermal heat flux play a critical role in the onset of many large ice streams. The interpretations also have implications for the dynamic behaviour of the Anvers-Hugo Trough palaeo-ice stream and, potentially, of several other Antarctic palaeo-ice streams. Keywords: multibeam bathymetry, ice stream, subglacial water, landfor

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    corecore