362 research outputs found

    Gauged Inflation

    Get PDF
    We propose a model for cosmic inflation which is based on an effective description of strongly interacting, nonsupersymmetric matter within the framework of dynamical Abelian projection and centerization. The underlying gauge symmetry is assumed to be SU(N+1)SU(N+1) with N1N \gg 1. Appealing to a thermodynamical treatment, the ground-state structure of the model is classically determined by a potential for the inflaton field (dynamical monopole condensate) which allows for nontrivially BPS saturated and thereby stable solutions. For T<MPT<M_P this leads to decoupling of gravity from the inflaton dynamics. The ground state dynamics implies a heat capacity for the vacuum leading to inflation for temperatures comparable to the mass scale MM of the potential. The dynamics has an attractor property. In contrast to the usual slow-roll paradigm we have mHm\gg H during inflation. As a consequence, density perturbations generated from the inflaton are irrelevant for the formation of large-scale structure, and the model has to be supplemented with an inflaton independent mechanism for the generation of spatial curvature perturbations. Within a small fraction of the Hubble time inflation is terminated by a transition of the theory to its center symmetric phase. The spontaneously broken ZN+1Z_{N+1} symmetry stabilizes relic vector bosons in the epochs following inflation. These heavy relics contribute to the cold dark matter of the universe and potentially originate the UHECRs beyond the GZK bound.Comment: 23 pages, 4 figures, subsection added, revision of text, to app. in PR

    Enhanced Fusion-Evaporation Cross Sections in Neutron-Rich 132^{132}Sn on 64^{64}Ni

    Full text link
    Evaporation residue cross sections have been measured with neutron-rich radioactive 132^{132}Sn beams on 64^{64}Ni in the vicinity of the Coulomb barrier. The average beam intensity was 2×1042\times 10^{4} particles per second and the smallest cross section measured was less than 5 mb. Large subbarrier fusion enhancement was observed. Coupled-channels calculations taking into account inelastic excitation and neutron transfer underpredict the measured cross sections below the barrier.Comment: 4 pages including 1 table and 3 figure

    Spinodal decomposition of expanding nuclear matter and multifragmentation

    Full text link
    Density fluctuations of expanding nuclear matter are studied within a mean-field model in which fluctuations are generated by an external stochastic field. Fluctuations develop about a mean one-body phase-space density corresponding to a hydrodinamic motion that describes a slow expansion of the system. A fluctuation-dissipation relation suitable for a uniformly expanding medium is obtained and used to constrain the strength of the stochastic field. The distribution of the liquid domains in the spinodal decomposition is derived. Comparison of the related distribution of the fragment size with experimental data on the nuclear multifragmentation is quite satisfactory.Comment: 19 RevTex4 pages, 6 eps figures, to appear in Phys. Rev.

    Effect of halo modelling on WIMP exclusion limits

    Get PDF
    WIMP direct detection experiments are just reaching the sensitivity required to detect galactic dark matter in the form of neutralinos. Data from these experiments are usually analysed under the simplifying assumption that the Milky Way halo is an isothermal sphere with maxwellian velocity distribution. Observations and numerical simulations indicate that galaxy halos are in fact triaxial and anisotropic. Furthermore, in the cold dark matter paradigm galactic halos form via the merger of smaller subhalos, and at least some residual substructure survives. We examine the effect of halo modelling on WIMP exclusion limits, taking into account the detector response. Triaxial and anisotropic halo models, with parameters motivated by observations and numerical simulations, lead to significant changes which are different for different experiments, while if the local WIMP distribution is dominated by small scale clumps then the exclusion limits are changed dramatically.Comment: 9 pages, 9 figures, version to appear in Phys. Rev. D, minor change

    Experimental Controlled-NOT Logic Gate for Single Photons in the Coincidence Basis

    Full text link
    We report a proof-of-principle demonstration of a probabilistic controlled-NOT gate for single photons. Single-photon control and target qubits were mixed with a single ancilla photon in a device constructed using only linear optical elements. The successful operation of the controlled-NOT gate relied on post-selected three-photon interference effects which required the detection of the photons in the output modes.Comment: 4 pages, 4 figures; minor change

    Surface and Image-Potential States on the MgB_2(0001) Surfaces

    Get PDF
    We present a self-consistent pseudopotential calculation of surface and image-potential states on MgB2(0001)MgB_2(0001) for both BB-terminated (BtB-t) and MgMg-terminated (MgtMg-t) surfaces. We find a variety of very clear surface and subsurface states as well as resonance image-potential states n=1,2 on both surfaces. The surface layer DOS at EFE_F is increased by 55% at BtB-t and by 90% at the MgtMg-t surface compared to DOS in the corresponding bulk layers.Comment: 3 pages, 6 figure

    Quasifission at extreme sub-barrier energies

    Full text link
    With the quantum diffusion approach the behavior of the capture cross-section is investigated in the reactions 92,94^{92,94}Mo + 92,94^{92,94}Mo, 100^{100}Ru + 100^{100}Ru, 104^{104}Pd + 104^{104}Pd, and 78^{78}Kr + 112^{112}Sn at deep sub-barrier energies which are lower than the ground state energies of the compound nuclei. Because the capture cross section is the sum of the complete fusion and quasifission cross sections, and the complete fusion cross section is zero at these sub-barrier energies, one can study experimentally the unique quasifission process in these reactions after the capture.Comment: 3 pages, 3 figure

    Peculiarities of sub-barrier fusion with quantum diffusion approach

    Full text link
    With the quantum diffusion approach the unexpected behavior of fusion cross section, angular momentum, and astrophysical S-factor at sub-barrier energies has been revealed. Out of the region of short-range nuclear interaction and action of friction at turning point the decrease rate of the cross section under the barrier becomes smaller. The calculated results for the reactions with spherical nuclei are in a good agreement with the existing experimental data.Comment: 11 pages, 5 figure

    Thermal photons as a measure for the rapidity dependence of the temperature

    Get PDF
    The rapidity distribution of thermal photons produced in Pb+Pb collisions at CERN-SPS energies is calculated within scaling and three-fluid hydrodynamics. It is shown that these scenarios lead to very different rapidity spectra. A measurement of the rapidity dependence of photon radiation can give cleaner insight into the reaction dynamics than pion spectra, especially into the rapidity dependence of the temperature.Comment: 3 Figure
    corecore