Density fluctuations of expanding nuclear matter are studied within a
mean-field model in which fluctuations are generated by an external stochastic
field. Fluctuations develop about a mean one-body phase-space density
corresponding to a hydrodinamic motion that describes a slow expansion of the
system. A fluctuation-dissipation relation suitable for a uniformly expanding
medium is obtained and used to constrain the strength of the stochastic field.
The distribution of the liquid domains in the spinodal decomposition is
derived. Comparison of the related distribution of the fragment size with
experimental data on the nuclear multifragmentation is quite satisfactory.Comment: 19 RevTex4 pages, 6 eps figures, to appear in Phys. Rev.