69 research outputs found

    Cost-effectiveness of stereotactic body radiation therapy versus video assisted thoracic surgery in medically operable stage I non-small cell lung cancer: A modeling study

    Get PDF
    Objectives: Stage I non-small cell lung cancer (NSCLC) can be treated with either Stereotactic Body Radiotherapy (SBRT) or Video Assisted Thoracic Surgery (VATS) resection. To support decision making, not only the impact on survival needs to be taken into account, but also on quality of life, costs and cost-effectiveness. Therefore, we performed a cost-effectiveness analysis comparing SBRT to VATS resection with respect to quality adjusted life years (QALY) lived and costs in operable stage I NSCLC. Materials and methods: Patient level and aggregate data from eight Dutch databases were used to estimate costs, health utilities, recurrence free and overall survival. Propensity score matching was used to minimize selection bias in these studies. A microsimulation model predicting lifetime outcomes after treatment in stage I NSCLC patients was used for the cost-effectiveness analysis. Model outcomes for the two treatments were overall survival, QALYs, and total costs. We used a Dutch health care perspective with 1.5 % discounting for health effects, and 4 % discounting for costs, using 2018 cost data. The impact of model parameter uncertainty was assessed with deterministic and probabilistic sensitivity analyses. Results: Patients receiving either VATS resection or SBRT were estimated to live 5.81 and 5.86 discounted QALYs, respectively. Average discounted lifetime costs in the VATS group were €29,269 versus €21,175 for SBRT. Difference in 90-day excess mortality between SBRT and VATS resection was the main driver for the difference in QALYs. SBRT was dominant in at least 74 % of the probabilistic simulations. Conclusion: Using a microsimulation model to combine available evidence on survival, costs, and health utilities in a cost-effectiveness analysis for stage I NSCLC led to the conclusion that SBRT dominates VATS resection in the majority of simulations

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons.peer-reviewe

    Effect of Oxygenator Size on Air Removal Characteristics: A Clinical Evaluation

    No full text
    During cardiopulmonary bypass (CPB), gaseous microemboli (GME) are released into the patients' arterial bloodstream. Gaseous microemboli may contribute to the adverse outcome after cardiac surgery. Recently, two oxygenator models with or without integrated arterial filter (IAF) were designed and only differ in size, leading to a change of 20% in surface area of the hollow fibers and 25% in blood velocities. The aim of this study was to assess the air removal characteristics of the inspire oxygenators with or without IAF. Sixty-eight patients were randomly assigned to four different groups: optimized adult and full adult and an additional IAF. Gaseous microemboli reduction rates were measured with a bubble counter. The number of GME reduction rates showed no differences. However, both models reduced significantly less volume of GME (optimized adult: 40.6% and full adult: 50.3%) compared with both models with IAF (88.7% and 88.5%, respectively). No significant differences of reduction rates were found between both devices without IAF and also not between both models with IAF. In conclusion, the larger inspire oxygenator tends to remove more GME. No effect from size of oxygenator device with integrated screen filter on GME reduction was observed. The inspire oxygenators with IAF may be considered as an adequate GME filte
    corecore