1,037 research outputs found

    A simple and controlled single electron transistor based on doping modulation in silicon nanowires

    Full text link
    A simple and highly reproducible single electron transistor (SET) has been fabricated using gated silicon nanowires. The structure is a metal-oxide-semiconductor field-effect transistor made on silicon-on-insulator thin films. The channel of the transistor is the Coulomb island at low temperature. Two silicon nitride spacers deposited on each side of the gate create a modulation of doping along the nanowire that creates tunnel barriers. Such barriers are fixed and controlled, like in metallic SETs. The period of the Coulomb oscillations is set by the gate capacitance of the transistor and therefore controlled by lithography. The source and drain capacitances have also been characterized. This design could be used to build more complex SET devices.Comment: to be published in Applied Physics Letter

    Reconstructed spatial resolution and contrast recovery with Bayesian penalized likelihood reconstruction (Q.Clear) for FDG-PET compared to time-of-flight (TOF) with point spread function (PSF)

    Get PDF
    BACKGROUND: Bayesian penalized likelihood reconstruction for PET (e.g., GE Q.Clear) aims at improving convergence of lesion activity while ensuring sufficient signal-to-noise ratio (SNR). This study evaluated reconstructed spatial resolution, maximum/peak contrast recovery (CRmax/CRpeak) and SNR of Q.Clear compared to time-of-flight (TOF) OSEM with and without point spread function (PSF) modeling. METHODS: The NEMA IEC Body phantom was scanned five times (3 min scan duration, 30 min between scans, background, 1.5-3.9 kBq/ml F18) with a GE Discovery MI PET/CT (3-ring detector) with spheres filled with 8-, 4-, or 2-fold the background activity concentration (SBR 8:1, 4:1, 2:1). Reconstruction included Q.Clear (beta, 150/300/450), "PSF+TOF4/16" (iterations, 4; subsets, 16; in-plane filter, 2.0 mm), "OSEM+TOF4/16" (identical parameters), "PSF+TOF2/17" (2 it, 17 ss, 2.0 mm filter), "OSEM+TOF2/17" (identical), "PSF+TOF4/8" (4 it, 8 ss, 6.4 mm), and "OSEM+TOF2/8" (2 it, 8 ss, 6.4 mm). Spatial resolution was derived from 3D sphere activity profiles. RC as (sphere activity concentration [AC]/true AC). SNR as (background mean AC/background AC standard deviation). RESULTS: Spatial resolution of Q.Clear150 was significantly better than all conventional algorithms at SBR 8:1 and 4:1 (Wilcoxon, each p < 0.05). At SBR 4:1 and 2:1, the spatial resolution of Q.Clear300/450 was similar or inferior to PSF+TOF4/16 and OSEM+TOF4/16. Small sphere CRpeak generally underestimated true AC, and it was similar for Q.Clear150/300/450 as with PSF+TOF4/16 or PSF+TOF2/17 (i.e., relative differences < 10%). Q.Clear provided similar or higher CRpeak as OSEM+TOF4/16 and OSEM+TOF2/17 resulting in a consistently better tradeoff between CRpeak and SNR with Q.Clear. Compared to PSF+TOF4/8/OSEM+TOF2/8, Q.Clear150/300/450 showed lower SNR but higher CRpeak. CONCLUSIONS: Q.Clear consistently improved reconstructed spatial resolution at high and medium SBR compared to PSF+TOF and OSEM+TOF, but only with beta = 150. However, this is at the cost of inferior SNR with Q.Clear150 compared to Q.Clear300/450 and PSF+TOF4/16/PSF+TOF2/17 while CRpeak for the small spheres did not improve considerably. This suggests that Q.Clear300/450 may be advantageous for the 3-ring detector configuration because the tradeoff between CR and SNR with Q.Clear300/450 was superior to PSF+TOF4/16, OSEM+TOF4/16, and OSEM+TOF2/17. However, it requires validation by systematic evaluation in patients at different activity and acquisition protocols

    Individual charge traps in silicon nanowires: Measurements of location, spin and occupation number by Coulomb blockade spectroscopy

    Full text link
    We study anomalies in the Coulomb blockade spectrum of a quantum dot formed in a silicon nanowire. These anomalies are attributed to electrostatic interaction with charge traps in the device. A simple model reproduces these anomalies accurately and we show how the capacitance matrices of the traps can be obtained from the shape of the anomalies. From these capacitance matrices we deduce that the traps are located near or inside the wire. Based on the occurrence of the anomalies in wires with different doping levels we infer that most of the traps are arsenic dopant states. In some cases the anomalies are accompanied by a random telegraph signal which allows time resolved monitoring of the occupation of the trap. The spin of the trap states is determined via the Zeeman shift.Comment: 9 pages, 8 figures, v2: section on RTS measurements added, many improvement

    Social media, protest cultures and political subjectivities of the Arab spring

    Get PDF
    This article draws on phenomenological perspectives to present a case against resisting the objectification of cultures of protest and dissent. The generative, self-organizing properties of protest cultures, especially as mobilized through social media, are frequently argued to elude both authoritarian political structures and academic discourse, leading to new political subjectivities or ‘imaginaries’. Stemming from a normative commitment not to over-determine such nascent subjectivities, this view has taken on a heightened resonance in relation to the recent popular uprisings in the Middle East and North Africa. The article argues that this view is based on an invalid assumption that authentic political subjectivities and cultures naturally emerge from an absence of constraint, whether political, journalistic or academic. The valorisation of amorphousness in protest cultures and social media enables affective and political projection, but overlooks politics in its institutional, professional and procedural forms

    Tight bounds for classical and quantum coin flipping

    Full text link
    Coin flipping is a cryptographic primitive for which strictly better protocols exist if the players are not only allowed to exchange classical, but also quantum messages. During the past few years, several results have appeared which give a tight bound on the range of implementable unconditionally secure coin flips, both in the classical as well as in the quantum setting and for both weak as well as strong coin flipping. But the picture is still incomplete: in the quantum setting, all results consider only protocols with perfect correctness, and in the classical setting tight bounds for strong coin flipping are still missing. We give a general definition of coin flipping which unifies the notion of strong and weak coin flipping (it contains both of them as special cases) and allows the honest players to abort with a certain probability. We give tight bounds on the achievable range of parameters both in the classical and in the quantum setting.Comment: 18 pages, 2 figures; v2: published versio

    Quantum Non-demolition Detection of Single Microwave Photons in a Circuit

    Get PDF
    Thorough control of quantum measurement is key to the development of quantum information technologies. Many measurements are destructive, removing more information from the system than they obtain. Quantum non-demolition (QND) measurements allow repeated measurements that give the same eigenvalue. They could be used for several quantum information processing tasks such as error correction, preparation by measurement, and one-way quantum computing. Achieving QND measurements of photons is especially challenging because the detector must be completely transparent to the photons while still acquiring information about them. Recent progress in manipulating microwave photons in superconducting circuits has increased demand for a QND detector which operates in the gigahertz frequency range. Here we demonstrate a QND detection scheme which measures the number of photons inside a high quality-factor microwave cavity on a chip. This scheme maps a photon number onto a qubit state in a single-shot via qubit-photon logic gates. We verify the operation of the device by analyzing the average correlations of repeated measurements, and show that it is 90% QND. It differs from previously reported detectors because its sensitivity is strongly selective to chosen photon number states. This scheme could be used to monitor the state of a photon-based memory in a quantum computer.Comment: 5 pages, 4 figures, includes supplementary materia

    Size scaling of the addition spectra in silicon quantum dots

    Full text link
    We investigate small artificial quantum dots obtained by geometrically controlled resistive confinement in low mobility silicon-on-insulator nanowires. Addition spectra were recorded at low temperature for various dot areas fixed by lithography. We compare the standard deviation of the addition spectra with theory in the high electron concentration regime. We find that the standard deviation scales as the inverse area of the dot and its absolute value is comparable to the energy spacing of the one particle spectrum.Comment: 4 pages, 5 figure
    corecore