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Abstract

Background: Bayesian penalized likelihood reconstruction for PET (e.g., GE Q.Clear)
aims at improving convergence of lesion activity while ensuring sufficient signal-to-
noise ratio (SNR). This study evaluated reconstructed spatial resolution, maximum/
peak contrast recovery (CRmax/CRpeak) and SNR of Q.Clear compared to time-of-
flight (TOF) OSEM with and without point spread function (PSF) modeling.

Methods: The NEMA IEC Body phantom was scanned five times (3 min scan
duration, 30 min between scans, background, 1.5–3.9 kBq/ml F18) with a GE
Discovery MI PET/CT (3-ring detector) with spheres filled with 8-, 4-, or 2-fold the
background activity concentration (SBR 8:1, 4:1, 2:1). Reconstruction included Q.Clear
(beta, 150/300/450), “PSF+TOF4/16” (iterations, 4; subsets, 16; in-plane filter, 2.0 mm),
“OSEM+TOF4/16” (identical parameters), “PSF+TOF2/17” (2 it, 17 ss, 2.0 mm filter),
“OSEM+TOF2/17” (identical), “PSF+TOF4/8” (4 it, 8 ss, 6.4 mm), and “OSEM+TOF2/8” (2 it,
8 ss, 6.4 mm). Spatial resolution was derived from 3D sphere activity profiles. RC as
(sphere activity concentration [AC]/true AC). SNR as (background mean AC/
background AC standard deviation).

Results: Spatial resolution of Q.Clear150 was significantly better than all conventional
algorithms at SBR 8:1 and 4:1 (Wilcoxon, each p < 0.05). At SBR 4:1 and 2:1, the
spatial resolution of Q.Clear300/450 was similar or inferior to PSF+TOF4/16 and
OSEM+TOF4/16. Small sphere CRpeak generally underestimated true AC, and it was
similar for Q.Clear150/300/450 as with PSF+TOF4/16 or PSF+TOF2/17 (i.e., relative
differences < 10%). Q.Clear provided similar or higher CRpeak as OSEM+TOF4/16 and
OSEM+TOF2/17 resulting in a consistently better tradeoff between CRpeak and SNR
with Q.Clear. Compared to PSF+TOF4/8/OSEM+TOF2/8, Q.Clear150/300/450 showed lower
SNR but higher CRpeak.
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Conclusions: Q.Clear consistently improved reconstructed spatial resolution at high
and medium SBR compared to PSF+TOF and OSEM+TOF, but only with beta = 150.
However, this is at the cost of inferior SNR with Q.Clear150 compared to Q.Clear300/450
and PSF+TOF4/16/PSF+TOF2/17 while CRpeak for the small spheres did not improve
considerably. This suggests that Q.Clear300/450 may be advantageous for the 3-ring
detector configuration because the tradeoff between CR and SNR with Q.Clear300/450
was superior to PSF+TOF4/16, OSEM+TOF4/16, and OSEM+TOF2/17. However, it requires
validation by systematic evaluation in patients at different activity and acquisition
protocols.

Keywords: PET, Image reconstruction, Spatial resolution, Contrast recovery, Signal-to-
noise ratio, TOF, PSF, Q.Clear, GE Discovery MI

Background
The current clinical standard for image reconstruction in positron emission tomography

(PET) is iterative algorithms, mainly ordered subset expectation maximization (OSEM). Re-

cently developed systems commonly combine time-of-flight (TOF) capabilities and compen-

sation for spatial variances in the scanner’s point spread function (PSF). While TOF mainly

improves signal-to-noise ratio (SNR) at comparable convergence level [1] and leaves stan-

dardized uptake values (SUV) comparably unaffected [2, 3], PSF primarily increases recon-

structed spatial resolution [4, 5] and has shown SUVmax increases by > 30% in clinical

studies [2, 3]. Both TOF and PSF benefit the tradeoff between contrast recovery (CR) and

SNR, but all conventional reconstruction methods share the principle limitation that ad-

equate CR by increasing numbers of iterations/subsets will be at the cost of decreasing SNR.

Bayesian penalized likelihood reconstruction, such as GE Q.Clear, has been introduced to

offer full convergence of focal activity peaks and high SNR in homogenous areas within the

same PET dataset [6]. Q.Clear utilizes voxel-wise regulation of the iterative steps with a

user-defined penalization factor β. Using a GE Discovery IQ scanner with analog detectors,

Reynés-Llompart et al. showed an improved tradeoff between CR and SNR in a NEMA

NU-2012 phantom protocol for Q.Clear with a β of 350 compared to PSF or OSEM (both

without TOF) [7]. However, differences to conventional reconstruction methods are influ-

enced by the choice of β. Lindström et al. reported superior contrast-to-noise ratios (CNR)

in a NEMA IQ phantom for Q.Clear compared to OSEM with PSF and TOF for a β of 400

and 533 but inferior CNR for a β < 300 [8]. While the improved CR at a β = 150 can result

in higher SUVmax in small pulmonary nodules by 25% [9], such significant intermethod

SUV differences may not be observed at β values > 150 [10] and may only be achieved at

the cost of high image noise [8]. Furthermore, the performance of TOF and PSF is

dependent on the signal-to-background ratio (SBR) and lesion/sphere size [11, 12]. Previous

studies that compared Q.Clear and conventional methods by only evaluating isolated recon-

struction settings may therefore be of limited representativeness.

The aim of the current study was to generate a differentiated insight into performance

benefits provided by the Q.Clear algorithm as measured by reconstructed spatial resolution,

CR and SNR. This should facilitate the identification of the most appropriate algorithm for

clinical use with the 3-ring digital detector configuration of the GE Discovery MI. Different

β settings in Q.Clear were compared to different iterations/subsets and filter settings for

OSEM with TOF with or without PSF.
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Methods
Phantom imaging

Three phantom measurement series were performed using the GE Discovery MI PET scan-

ner (GE Healthcare, General Electric, Boston, MA, USA) with a digital 3-ring detector and a

reported sensitivity of 7.3 cps/kBq [13]. Total activity in the field of view was approximately

35 MBq. The absolute activities were measured in the same dose calibrator that is used for

periodic calibration of the PET system (ISOMED 2010, MED Dresden GmbH, Germany).

To achieve SBR of 2:1, 4:1, and 8:1, the six spheres of a NEMA IEC PET Body Phantom

(manufacturer, PTW Freiburg, Germany; sphere diameter, 10, 13, 17, 22, 28, and 37 mm)

were filled with 7.5, 12.5, or 24.4 kBq/ml 18F-fluoride, respectively (decay-corrected to the

start of the first imaging). The background was filled with either 3.9, 3.1, or 3.1 kBq/ml (true

SBR, 1.94:1, 4.06:1, and 7.87:1). Imaging of each phantom was performed for five times every

30 min for 3 min each with the sphere plane aligned to the isocenter of the single bed pos-

ition. CT data of the phantom obtained for each scan were used for attenuation and scatter

correction.

Image reconstruction

PET raw data were reconstructed using Q.Clear with a β value of 150, 300, or 450, respect-

ively (Q.Clear150, Q.Clear300, Q.Clear450). OSEM+TOF reconstruction (GE VUE Point FX)

was performed as OSEM+TOF4/16 (4 iterations, 16 subsets, Gaussian in-plane filter of 2.0

mm), OSEM+TOF2/17 (2 iterations, 17 subsets, 2.0 mm filter), and OSEM+TOF2/8 (2 it, 8

ss; 6.4 mm). OSEM+PSF+TOF (hereafter referred to as PSF+TOF; GE VUE Point FX with

SharpIR) was reconstructed as PSF+TOF4/16 (4 it, 16 ss, 2.0 mm), as PSF+TOF2/17 (2 it, 17

ss, 2.0 mm) and PSF+TOF4/8 (4 it, 8 ss, 6.4 mm). OSEM+TOF and PSF+TOF reconstruc-

tions always included a “standard” z-axis filter. In all 9 reconstruction settings, field of view

was 70 cm (matrix size, 256 × 256; voxel size, 2.73 × 2.73 × 2.78 mm3).

Image assessment

Measurement of activity concentrations (AC; kBq/ml) was performed with dedicated soft-

ware (ROVER, version 3.0.34, ABX advanced biochemical compounds GmbH, Radeberg,

Germany). The mean background AC and its standard deviation (SD) were defined with a

spherical background volume of interest (VOI; volume, 30 ml). Maximum AC of each

sphere was obtained. Using the ACCURATE tool (version v23102018, Ronald Boellaard,

Amsterdam UMC, Amsterdam, The Netherlands), the peak AC of each sphere was defined

as the average AC in a spherical VOI of 1.2 cm in diameter that was positioned to generate

the highest peak AC of this sphere. Peak and maximum CR (CRpeak, CRmax) were defined

as the ratio of measured peak/maximum AC of the spheres to the true decay-corrected AC.

SNR was defined as follows:

SNR ¼ background mean AC
background AC standard deviation

The spatial resolution was assessed as the full width at half maximum (FWHM) of

the PSF in the reconstructed images. PSF was modeled by a 3D Gaussian, and FWHM

was determined by applying the method described in detail by Hofheinz et al. [14]. This

method is based on fitting the analytic solution for the radial activity profile of a homo-

geneous sphere convolved with a 3D Gaussian to the reconstructed data. In this
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process, the full 3D vicinity of each sphere is evaluated by transforming the data to

spherical coordinates relative to the respective sphere's center (Fig. 1 and Fig. 2). The

analytic solution has five parameters: signal (true activity within the sphere), back-

ground level, FWHM of the PSF, the sphere radius, and the wall thickness of the spher-

ical inserts. Sphere radius and wall thickness were fixed to their known values. The

remaining three parameters were determined by non-linear least-squares fits. With this

method the spatial resolution can be determined at finite background as well as for ex-

tended objects, and, therefore, allows to study size and contrast dependence of the

resolution. Note that this method assumes a Gaussian PSF, which is never exactly the

case. However, the method still leads to a reasonable approximation of the spatial reso-

lution as long as the slope at the object boundary (signal decline) is modeled correctly

by the fit function.

Inner volumes (25.6, 10.7, 5.4, 2.6, 1.2, and 0.58 ml), inner radii (18.3, 13.7, 10.9, 8.5, 6.6,

and 5.2 mm), and wall thickness (range, 0.9 to 1.3 mm) of the spheres were determined

Fig. 1 Sphere activity profiles (37 mm). Radial activity profiles of the 37 mm sphere are displayed for signal-
to-background ratio (SBR) 8:1 with the respective reconstructed spatial resolution (full width at half
maximum, FWHM)
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based on weighting of the sphere inserts after filling with water (corrected for the volume of

the tube mounting) combined with caliper measurements of the outer diameters.

Patient example

A patient example (Fig. 3) was included by way of illustration depicting a male patient (body

weight, 63 kg; body mass index [BMI], 21.8 kg/m2) who underwent FDG-PET/CT for early

response assessment for Hodgkin’s lymphoma using the same PET scanner. Injection of 250

MBq 18F-FDG was followed by acquisition in the supine position from base of the skull to

proximal femora 62 min post-injection (decay-corrected injected activity at scan start, 2.7

MBq/kg; acquisition time, 3 min per bed position). Low-dose-CT was acquired for attenu-

ation correction. PET raw data were reconstructed with the 9 reconstruction algorithms de-

tailed above. SNR in the liver for each algorithm was calculated as the ratio of SUVmean to

SUV standard deviation in a spherical VOI in the right liver lobe with an identical location

in each dataset (volume, 19.2 ml).

Fig. 2 Sphere activity profiles (13 mm). Radial activity profiles of the 13 mm sphere are displayed for signal-
to-background ratio (SBR) 8:1 with the respective reconstructed spatial resolution (full width at half
maximum, FWHM)
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Statistical analysis

Statistical analysis was performed using SPSS 22 (IBM Corporation, Armonk, NY,

USA). Descriptive parameters were expressed as mean and SD. Differences in spatial

resolution, CRpeak, CRmax, and SNR between reconstruction methods were compared

using the Wilcoxon test. Differences in these measures between SBR were compared

with either Kruskal-Wallis test or Mann-Whitney U test. Statistical significance was

generally assumed at p < 0.05.

Fig. 3 Patient example. Coronar FDG-PET images of a patient are displayed for all nine reconstruction
algorithms (details see the “Methods” section). Signal-to-noise ratio (SNR) in the liver is given. Notably,
Q.Clear150, PSF+TOF4/16, OSEM+TOF4/16, and OSEM+TOF2/17 exhibit unacceptably high noise (i.e., low SNR)
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Results
Reconstructed spatial resolution

Reconstructed spatial resolution was estimated based on an analytic fit to the spheres’

activity profiles which are depicted in Figs. 1 and 2 for the first imaging time point at

SBR 8:1. These profiles demonstrate that only OSEM+TOF2/8 gives a smooth sphere

profile but fails to reach high CR in the small sphere. In the large sphere (Fig. 1), over-

shoots at the sphere’s surface (edge artifacts) can be observed in similar shape for

Q.Clear and PSF+TOF but with varying scatter of single voxels depending on the re-

construction parameters. Edge elevations with Q.Clear increase with decreasing β. At

Q.Clear300, their magnitude is comparable to PSF+TOF2/17. At Q.Clear150, CR over-

shoot is more comparable to PSF+TOF4/16 and OSEM+TOF2/17. For PSF+TOF, they

increase with increasing iterations/subsets and narrow in-plane filter (2.0 mm).

OSEM+TOF4/16 and OSEM+TOF2/17 generally exceed a CR of 1.0 for the large sphere

irrespective of the location along the sphere’s radius (primarily from excessive noise).

In the small sphere (Fig. 2), overshoots are also visible, but due to the small radius, the

typical shape of the edge elevations is not visualized.

For all nine reconstruction methods, spatial resolution (mean of all five scan time points)

significantly decreased from SBR 8:1 to SBR 4:1 (Mann-Whitney U test, each p < 0.01) and

from SBR 4:1 to SBR 2:1 (each p < 0.05; except for PSF+TOF4/16, PSF+TOF2/17, OSEM+-

TOF2/17, and PSF+TOF4/8, p > 0.05). This decline was especially observed for the Q.Clear al-

gorithms (Table 1).

At SBR 8:1 and 4:1, Q.Clear150 yielded significantly better spatial resolution than all

conventional algorithms (Wilcoxon test, each p < 0.05) while at SBR 2:1 spatial reso-

lution was similar to PSF+TOF4/16 and OSEM+TOF4/16 (each p > 0.05). Q.Clear300 also

showed significantly superior spatial resolution at SBR 8:1 compared to all conventional

algorithms (each p < 0.05) except for PSF+TOF4/16 (p > 0.05). Spatial resolution for

Q.Clear300 at SBR 4:1 and 2:1 was inferior to PSF+TOF4/16 (p < 0.05) and similar to

OSEM+TOF4/16 (p > 0.05). Q.Clear450 was inferior to PSF+TOF4/16 (p < 0.05) and com-

parable to OSEM+TOF4/16 (p > 0.05) at SBR 8:1 while it was inferior to both

PSF+TOF4/16 and OSEM+TOF4/16 at SBR 4:1 and 2:1 (each p < 0.05).

SNR

Mean SNR significantly increased from Q.Clear150 to Q.Clear300 and Q.Clear450 (each p

< 0.001; Table 2). Compared to conventional algorithms, SNR of Q.Clear150 was most

similar to OSEM+TOF2/17 (p = 0.14) and PSF+TOF4/16 (p = 0.04) while Q.Clear300
showed similar SNR as PSF+TOF2/17 (p = 0.08). SNR of Q.Clear450 was significantly

higher than of PSF+TOF4/16/PSF+TOF2/17 and OSEM+TOF4/16/OSEM+TOF2/17 (each

p < 0.01). Figure 3 gives a patient example.

CRpeak (10, 13, and 17 mm spheres)

Relative CRpeak differences between Q.Clear150 and neither Q.Clear300 nor Q.Clear450
exceeded 10% at any SBR or sphere size (Fig. 4).

None of the differences between any Q.Clear reconstruction and PSF+TOF4/16 or

PSF+TOF2/17 exceeded 10% at any SBR or sphere size, and intermethod differences did not

differ between SBR (Kruskal-Wallis test, each p > 0.05). Relative CRpeak differences between
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Table 1 Reconstructed spatial resolution

Mean ± SD

SBR 8:1

Q.Clear150 3.7 ± 0.2

Q.Clear300 4.3 ± 0.2

Q.Clear450 4.7 ± 0.2

PSF+TOF4/16 4.2 ± 0.2

PSF+TOF2/17 5.1 ± 0.2

PSF+TOF4/8 7.0 ± 0.2

OSEM+TOF4/16 4.8 ± 0.2

OSEM+TOF2/17 5.2 ± 0.3

OSEM+TOF2/8 8.2 ± 0.2

SBR 4:1

Q.Clear150 4.4 ± 0.6

Q.Clear300 5.0 ± 0.5

Q.Clear450 5.6 ± 0.4

PSF+TOF4/16 4.7 ± 0.2

PSF+TOF2/17 5.7 ± 0.6

PSF+TOF4/8 7.5 ± 0.4

OSEM+TOF4/16 5.1 ± 0.3

OSEM+TOF2/17 5.8 ± 0.7

OSEM+TOF2/8 8.8 ± 0.3

SBR 2:1

Q.Clear150 5.1 ± 0.7

Q.Clear300 5.9 ± 0.8

Q.Clear450 6.4 ± 0.6

PSF+TOF4/16 5.1 ± 0.5

PSF+TOF2/17 6.2 ± 0.7

PSF+TOF4/8 7.6 ± 0.5

OSEM+TOF4/16 5.4 ± 0.7

OSEM+TOF2/17 6.0 ± 0.9

OSEM+TOF2/8 9.2 ± 0.6

Mean ± SD of the reconstructed spatial resolution (FWHM) for the three largest spheres is displayed (i.e., diameter of 22,
28, and 37 mm). Increasing SD mirror increasing noise with decreasing SBR

Table 2 SNR

Mean ± SD

Q.Clear150 4.2 ± 1.4

Q.Clear300 7.0 ± 2.1

Q.Clear450 9.3 ± 2.7

PSF+TOF4/16 4.4 ± 1.1

PSF+TOF2/17 7.0 ± 1.8

PSF+TOF4/8 12.8 ± 3.2

OSEM+TOF4/16 2.5 ± 0.6

OSEM+TOF2/17 3.9 ± 0.9

OSEM+TOF2/8 16.6 ± 4.1

Mean ± SD of the SNR is displayed (combined data of all three SBR)
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Q.Clear150 or Q.Clear300 and either OSEM+TOF4/16, OSEM+TOF2/17, PSF+TOF4/8, or

OSEM+TOF2/8 exceeded 10% in at least one of the three small spheres at all SBR, and dif-

ferences increased with SBR (each p < 0.01). Relative differences between Q.Clear450 and

OSEM+TOF4/16 and OSEM+TOF2/17 increased with SBR (p < 0.05) but did not surpass

10%. Differences in Q.Clear450 and PSF+TOF4/8 increased with SBR (p < 0.001) and

exceeded 10% at SBR 8:1/4:1; differences to OSEM+TOF2/8 surpassed 10% at all SBR.

Contrasting CRpeak differences with SNR differences

Figure 5 contrasts intermethod differences in CRpeak (three small spheres) and SNR of

Q.Clear and conventional reconstruction methods. At similar SNR (mean relative dif-

ference of all SBR, + 6.3 ± 10.8%), Q.Clear150 showed higher CRpeak for the small

spheres than OSEM+TOF2/17 (+ 10.6 ± 3.0%) while CRpeak was similar to

PSF+TOF4/16 (+ 1.0 ± 2.8%) and PSF+TOF2/17 (+ 6.0 ± 2.6%) at lower SNR

(PSF+TOF4/16, − 7.4 ± 8.0%; PSF+TOF2/17, − 41.4 ± 5.2%). Q.Clear300 resulted in both

higher CRpeak and SNR than OSEM+TOF2/17 (CRpeak, + 6.9 ± 3.5%; SNR, + 78.0 ±

13.3%). CRpeak of Q.Clear300 and PSF+TOF2/17 were similar (+ 2.1 ± 2.2%) as was SNR

(− 1.8 ± 5.9%). Q.Clear450 showed equal CRpeak as PSF+TOF4/16 (− 6.9 ± 3.9%) and

PSF+TOF2/17 (− 1.5 ± 2.4%) at higher SNR (+ 107 ± 11.0%; + 31.1 ± 6.3%). CRpeak were

also similar to OSEM+TOF4/16 (+ 0.1 ± 5.3%) and OSEM+TOF2/17 (+ 3.5 ± 4.0%) at

higher SNR (+ 264 ± 26.1%; + 138 ± 15.0%). Compared to PSF+TOF4/8 and OSEM+-

TOF2/8, all Q.Clear methods showed higher CRpeak (Q.Clear150 vs. OSEM+TOF2/8, +

25.5 ± 6.4%) at lower SNR (Q.Clear150 vs. OSEM+TOF2/8, − 75.1 ± 2.5%).

Fig. 4 CRpeak and CRmax. Peak contrast recovery (CRpeak; upper row) and maximum contrast recovery
(CRmax; lower row) are displayed for all reconstruction algorithms at the three signal-to-background ratios
(SBR) as a function of sphere diameters
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CRmax (10, 13, and 17 mm spheres)

CRmax of Q.Clear150 exceeded all other reconstruction methods by ≥ 10% for at least

one of the three small spheres at all SBR (Fig. 4). Q.Clear300 showed comparable

CRmax for the small spheres as PSF+TOF4/16 but surpassed CRmax of all other con-

ventional algorithms by > 10%. Q.Clear450 showed lower CRmax (≥ 10%) than

PSF+TOF4/16, PSF+TOF2/17, OSEM+TOF4/16, and OSEM+TOF2/17 but higher CRmax

compared to PSF+TOF4/8 and OSEM+TOF2/8.

Discussion
The present study assessed reconstructed spatial resolution, CR, and SNR in phantom

measurements for Q.Clear in comparison to PSF+TOF and OSEM+TOF as a basis for

investigations on the most appropriate algorithm for clinical use with the 3-ring-

detector GE Discovery MI.

In general, differences between Q.Clear and conventional algorithms were consider-

ably higher when using a lower product of iterations and subsets for PSF+TOF or

OSEM+TOF (16 or 32 vs. 34 vs. 64) which is less likely to reach convergence and, espe-

cially, using a smoother in-plane postprocessing filter (6.4 mm vs. 2.0 mm). Using these

parameters, PSF+TOF and OSEM+TOF consistently provided significantly inferior re-

constructed spatial resolution than Q.Clear as well as lower CRpeak in the small

spheres (diameter, 10 to 17 mm). In contrast, SNR were significantly higher than with

any Q.Clear algorithm. With a high product of iterations and subsets and a 2.0 mm in-

plane filter (PSF+TOF4/16 and OSEM+TOF4/16), CRpeak was similar to all Q.Clear al-

gorithms, and SNR was comparable or even lower than with Q.Clear150. Both observa-

tions are in line with Teoh et al. who showed superior CR but lower SNR for Q.Clear

with β of 100 to 400 compared to OSEM+TOF with 2 iterations, 24 subsets, and 6.4

mm filter (GE Discovery 690). However, compared to PSF+TOF with 3 iterations, 24

subsets, and 2.0 mm filter, CR and SNR with Q.Clear were either similar (β of 100 or

Fig. 5 Contrasting CRpeak differences to SNR differences. Tradeoff between intermethod differences in
peak contrast recovery (CRpeak) and signal-to-noise ratio (SNR) is displayed for different pairs of
reconstruction algorithms as a combined analysis of all SBR. Colors of the triangles represent either higher
(green), equal (grey) or lower (red) CRpeak or SNR for the algorithm in the left column, respectively. For
example, if in a certain pair of algorithms, one provides higher CRpeak for the small spheres at similar SNR
(i.e., green and grey triangle) or vice versa, this algorithm may be attested superior overall image quality.
For CRpeak, higher or lower values are defined as > 10% difference for at least one of the smaller spheres
(10, 13, and 17 mm). For SNR, statistically significant differences (Wilcoxon test) are determining
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200) or progressively lower (β ≥ 300) [9]. For clinical use, the smooth appearance of im-

ages reconstructed with PSF+TOF4/8/OSEM+TOF2/8 may be appealing to physicians

(Fig. 3), but it will result in a potential loss of small sphere detectability and CR.

However, the observation of higher CR at systematically lower SNR is of limited rele-

vance when assessing actual superiority or inferiority in overall image quality, i.e., at

the tradeoff between both measures. It remains a mere observation; therefore, pairs of

reconstruction settings with comparable SNR were evaluated additionally. PSF+TOF2/17
showed similar SNR as Q.Clear300 while SNR in OSEM+TOF2/17 was comparable to

Q.Clear150. Comparison of Q.Clear300 and PSF+TOF2/17 showed that despite superior

reconstructed spatial resolution for Q.Clear300 at SBR 8:1 and 4:1 (4.3/5.0 mm vs. 5.1/

5.7 mm), both methods achieved similar CRpeak in the small spheres (i.e., relative dif-

ferences ≤ 10%; Fig. 5). Comparing Q.Clear150 to OSEM+TOF2/17, both spatial reso-

lution (3.7/4.4 mm vs. 5.2/5.8 mm) and CRpeak were higher for Q.Clear150, i.e., it

offered superior image quality (tradeoff between CR and SNR). Image quality with the

Q.Clear algorithms was generally superior to OSEM+TOF4/16 and OSEM+TOF2/17 but

only Q.Clear450 was consistently superior to both PSF+TOF4/16 and PSF+TOF2/17 (Fig.

5). Vandendriessche et al. recently investigated the same PET scanner (also the 3-ring

configuration) under the NEMA NU2-2012 protocol and obtained superior image qual-

ity (CR and background variability) for Q.Clear with β of 50 compared to OSEM+TOF

with 4 iterations and 34 subsets (filter not detailed) [13]. Reynés-Llompart et al. also re-

ported an improved tradeoff between CR and SNR for Q.Clear in measurements based

on the NEMA NU2-2012 standard (Q.Clear with β of 350; OSEM and PSF with 4 itera-

tions, 12 subsets, and 4.8 mm in-plane filter). CR at SBR 8:1, 4:1, and 2:1 was compar-

able or slightly higher with Q.Clear while background variability was generally lower

[7]. However, the authors provided additional data on PSF and OSEM with 8 iterations,

12 subsets and an in-plane filter of 2.0 mm which revealed superior CR for OSEM and

PSF compared to Q.Clear with β of 350 (Supplemental Data in [7]). Similar to the

present study, this underlines the necessity of a differentiated comparison as for all

Q.Clear algorithms currently investigated a PSF+TOF reconstruction with relatively

similar image properties could be identified. Discrepancies between Reynés-Llompart

et al. and the current measurements may arise from the different PET scanner (GE

Discovery IQ) with analog detectors and considerably higher system sensitivity (21.6 vs.

7.3 cps/kBq) due to 5 rows of detector rings. Notably, background variability for the

GE Discovery MI at the NEMA NU2-2012 standard has shown to decrease

considerably when comparing the 3-ring to the 4-ring configuration while CR did not

improve [13].

Radial activity profiles of the spheres were derived visualizing the cause of inter-

method CR differences. In PSF reconstruction, the so-called edge artifacts are well doc-

umented as the cause of increased CR [11, 15]. As Q.Clear reconstruction also utilizes

PSF compensation [6], Fig. 1 demonstrates edge artifacts which are similar to PSF+TOF

and which increase with decreasing β [16] but are clearly detectable even at β = 450.

The sphere profiles further illustrate that in the small sphere, maximum CR is deter-

mined by single voxels that may far surpass 1.0 and explain exceedingly high CRmax

especially with Q.Clear150 and OSEM+TOF4/16. As a result, CRmax tends to overesti-

mate the true sphere activity concentration even in the smaller spheres (Fig. 4). In con-

trast, activity distribution along the slope of the sphere profile appears similar for all
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Q.Clear methods and PSF+TOF4/16 and PSF+TOF2/17 which explains comparable

CRpeak (Fig. 5).

The current analysis demonstrated superior reconstructed spatial resolution for

Q.Clear compared to conventional algorithms at high SBR (8:1). Improving spatial reso-

lution with increasing SBR can be seen in all reconstruction methods (Table 1) but es-

pecially in the three Q.Clear algorithms (each about 27% improvement for SBR 8:1 vs.

2:1). Conversely, spatial resolution at SBR 4:1 and 2:1 with PSF+TOF4/16 and OSEM+-

TOF4/16 was similar or even superior to Q.Clear300 and Q.Clear450. Although recent

data on the spatial resolution for this PET scanner is available [13], it had been ob-

tained based on the NEMA NU2-2012 protocol for a filled tube of ≤ 1 mm diameter,

and comparative data for Q.Clear is generally not available. Previous reports suggest

that spatial resolution (NEMA protocol) for the GE Discovery MI does not improve

with an increasing number of detector rings [13, 17].

The phantom measurements were performed as representative as possible for im-

aging protocols in clinical routine, i.e., typical activity concentrations in spheres

and background were chosen. In addition, the effective reconstructed spatial reso-

lution was determined using spheres with typical sizes of tumor lesions and SBR.

As illustrated by the patient example in Fig. 3, SNR of Q.Clear150 and PSF+TOF

or OSEM+TOF with high products of iterations and subsets combined with a 2.0-

mm in-plane filter may be insufficient for clinical use with the 3-ring detector con-

figuration because high image noise could impair reliable lesion detection. Under

these conditions, with sufficiently long acquisition time (3 min per bed position in

the current study), Q.Clear300 and Q.Clear450 may offer the best compromise be-

tween CR and SNR for whole-body imaging. Lindström et al. used the 4-ring de-

tector GE Discovery MI for phantom and patient examinations. The authors

reported superior SNR at matched noise in a liver VOI with Q.Clear (β of 133 to

533) compared to PSF+TOF (3 it, 16 ss, 5.0 mm filter), and clinical whole-body

FDG-PET data with β of 267 to 533 achieved the highest score in subjective image

quality [8]. Trägårdh et al. found a β of 500 to 600 to be optimal for whole-body

FDG-PET with the 4-ring detector GE Discovery MI if the product “AT” of

injected activity per kilogram and acquisition time per bed position was 6 (i.e., 4

MBq/kg and 1.5 min acquisition) [18]. The same group recommended a β of 400

to 550 for 18F-fluorocholine PET if “AT” was 6 [19]. If “AT” is increased, this

could enable lower β values such as 300 while maintaining sufficient SNR for clin-

ical reporting. However, systematic data on the 3-ring detector configuration is

currently missing, and the current patient example (Fig. 3; “AT” = 12) can only be

illustrative. Dedicated investigations of patient data are necessary to confirm the

most appropriate Q.Clear reconstruction setting at different BMI, levels of injected

activity and acquisition times. Furthermore, the selection of the most suitable re-

construction setting may also differ depending on the radionuclide or the examined

body part and clinical question (whole-body vs. brain studies).

Conclusions
Q.Clear can provide superior reconstructed spatial resolution compared to PSF+TOF

and OSEM+TOF if β is low (150) and SBR is high. However, using the 3-ring detector

configuration, this is at the cost of inferior SNR with Q.Clear150 compared to
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Q.Clear300/450 and PSF+TOF4/16/PSF+TOF2/17 while CRpeak for the small spheres did

not improve considerably. In contrast, Q.Clear300/450 showed an improved tradeoff be-

tween CR and SNR compared to PSF+TOF and OSEM+TOF with different combina-

tions of iterations, subsets and in-plane filters. Especially compared to Q.Clear150,

PSF+TOF4/16, and OSEM+TOF4/16, this may allow for an appropriately low level of

image noise for whole-body PET in clinical routine while averting disadvantageous

small lesion detectability and quantification. However, a dedicated systematic evalu-

ation of patient data is required for validation at different activity and acquisition

protocols.
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