44 research outputs found
Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage
Tropical rainforests harbor exceptionally high biodiversity and store large amounts of carbon in vegetation biomass. However, regional variation in plant species richness and vegetation carbon stock can be substantial, and may be related to the heterogeneity of topoedaphic properties. Therefore, aboveground vegetation carbon storage typically differs between geographic forest regions in association with the locally dominant plant functional group. A better understanding of the underlying factors controlling tropical forest diversity and vegetation carbon storage could be critical for predicting tropical carbon sink strength in response to projected climate change. Based on regionally replicated 1-ha forest inventory plots established in a region of high geomorphological heterogeneity we investigated how climatic and edaphic factors affect tropical forest diversity and vegetation carbon storage. Plant species richness (of all living stems >10 cm in diameter) ranged from 69 to 127 ha-1 and vegetation carbon storage ranged from 114 to 200 t ha-1. While plant species richness was controlled by climate and soil water availability, vegetation carbon storage was strongly related to wood density and soil phosphorus availability. Results suggest that local heterogeneity in resource availability and plant functional composition should be considered to improve projections of tropical forest ecosystem functioning under future scenarios
Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes
open263siWe acknowledge support by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118), Scientific Grant Agency VEGA(GrantNo.2/0101/18), as well as by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (Grant Agreement No. 677232)Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.openKwon T.; Shibata H.; Kepfer-Rojas S.; Schmidt I.K.; Larsen K.S.; Beier C.; Berg B.; Verheyen K.; Lamarque J.-F.; Hagedorn F.; Eisenhauer N.; Djukic I.; Caliman A.; Paquette A.; Gutierrez-Giron A.; Petraglia A.; Augustaitis A.; Saillard A.; Ruiz-Fernandez A.C.; Sousa A.I.; Lillebo A.I.; Da Rocha Gripp A.; Lamprecht A.; Bohner A.; Francez A.-J.; Malyshev A.; Andric A.; Stanisci A.; Zolles A.; Avila A.; Virkkala A.-M.; Probst A.; Ouin A.; Khuroo A.A.; Verstraeten A.; Stefanski A.; Gaxiola A.; Muys B.; Gozalo B.; Ahrends B.; Yang B.; Erschbamer B.; Rodriguez Ortiz C.E.; Christiansen C.T.; Meredieu C.; Mony C.; Nock C.; Wang C.-P.; Baum C.; Rixen C.; Delire C.; Piscart C.; Andrews C.; Rebmann C.; Branquinho C.; Jan D.; Wundram D.; Vujanovic D.; Adair E.C.; Ordonez-Regil E.; Crawford E.R.; Tropina E.F.; Hornung E.; Groner E.; Lucot E.; Gacia E.; Levesque E.; Benedito E.; Davydov E.A.; Bolzan F.P.; Maestre F.T.; Maunoury-Danger F.; Kitz F.; Hofhansl F.; Hofhansl G.; De Almeida Lobo F.; Souza F.L.; Zehetner F.; Koffi F.K.; Wohlfahrt G.; Certini G.; Pinha G.D.; Gonzlez G.; Canut G.; Pauli H.; Bahamonde H.A.; Feldhaar H.; Jger H.; Serrano H.C.; Verheyden H.; Bruelheide H.; Meesenburg H.; Jungkunst H.; Jactel H.; Kurokawa H.; Yesilonis I.; Melece I.; Van Halder I.; Quiros I.G.; Fekete I.; Ostonen I.; Borovsk J.; Roales J.; Shoqeir J.H.; Jean-Christophe Lata J.; Probst J.-L.; Vijayanathan J.; Dolezal J.; Sanchez-Cabeza J.-A.; Merlet J.; Loehr J.; Von Oppen J.; Loffler J.; Benito Alonso J.L.; Cardoso-Mohedano J.-G.; Penuelas J.; Morina J.C.; Quinde J.D.; Jimnez J.J.; Alatalo J.M.; Seeber J.; Kemppinen J.; Stadler J.; Kriiska K.; Van Den Meersche K.; Fukuzawa K.; Szlavecz K.; Juhos K.; Gerhtov K.; Lajtha K.; Jennings K.; Jennings J.; Ecology P.; Hoshizaki K.; Green K.; Steinbauer K.; Pazianoto L.; Dienstbach L.; Yahdjian L.; Williams L.J.; Brigham L.; Hanna L.; Hanna H.; Rustad L.; Morillas L.; Silva Carneiro L.; Di Martino L.; Villar L.; Fernandes Tavares L.A.; Morley M.; Winkler M.; Lebouvier M.; Tomaselli M.; Schaub M.; Glushkova M.; Torres M.G.A.; De Graaff M.-A.; Pons M.-N.; Bauters M.; Mazn M.; Frenzel M.; Wagner M.; Didion M.; Hamid M.; Lopes M.; Apple M.; Weih M.; Mojses M.; Gualmini M.; Vadeboncoeur M.; Bierbaumer M.; Danger M.; Scherer-Lorenzen M.; Ruek M.; Isabellon M.; Di Musciano M.; Carbognani M.; Zhiyanski M.; Puca M.; Barna M.; Ataka M.; Luoto M.; H. Alsafaran M.; Barsoum N.; Tokuchi N.; Korboulewsky N.; Lecomte N.; Filippova N.; Hlzel N.; Ferlian O.; Romero O.; Pinto-Jr O.; Peri P.; Dan Turtureanu P.; Haase P.; Macreadie P.; Reich P.B.; Petk P.; Choler P.; Marmonier P.; Ponette Q.; Dettogni Guariento R.; Canessa R.; Kiese R.; Hewitt R.; Weigel R.; Kanka R.; Cazzolla Gatti R.; Martins R.L.; Ogaya R.; Georges R.; Gaviln R.G.; Wittlinger S.; Puijalon S.; Suzuki S.; Martin S.; Anja S.; Gogo S.; Schueler S.; Drollinger S.; Mereu S.; Wipf S.; Trevathan-Tackett S.; Stoll S.; Lfgren S.; Trogisch S.; Seitz S.; Glatzel S.; Venn S.; Dousset S.; Mori T.; Sato T.; Hishi T.; Nakaji T.; Jean-Paul T.; Camboulive T.; Spiegelberger T.; Scholten T.; Mozdzer T.J.; Kleinebecker T.; Runk T.; Ramaswiela T.; Hiura T.; Enoki T.; Ursu T.-M.; Di Cella U.M.; Hamer U.; Klaus V.; Di Cecco V.; Rego V.; Fontana V.; Piscov V.; Bretagnolle V.; Maire V.; Farjalla V.; Pascal V.; Zhou W.; Luo W.; Parker W.; Parker P.; Kominam Y.; Kotrocz Z.; Utsumi Y.Kwon T.; Shibata H.; Kepfer-Rojas S.; Schmidt I.K.; Larsen K.S.; Beier C.; Berg B.; Verheyen K.; Lamarque J.-F.; Hagedorn F.; Eisenhauer N.; Djukic I.; Caliman A.; Paquette A.; Gutierrez-Giron A.; Petraglia A.; Augustaitis A.; Saillard A.; Ruiz-Fernandez A.C.; Sousa A.I.; Lillebo A.I.; Da Rocha Gripp A.; Lamprecht A.; Bohner A.; Francez A.-J.; Malyshev A.; Andric A.; Stanisci A.; Zolles A.; Avila A.; Virkkala A.-M.; Probst A.; Ouin A.; Khuroo A.A.; Verstraeten A.; Stefanski A.; Gaxiola A.; Muys B.; Gozalo B.; Ahrends B.; Yang B.; Erschbamer B.; Rodriguez Ortiz C.E.; Christiansen C.T.; Meredieu C.; Mony C.; Nock C.; Wang C.-P.; Baum C.; Rixen C.; Delire C.; Piscart C.; Andrews C.; Rebmann C.; Branquinho C.; Jan D.; Wundram D.; Vujanovic D.; Adair E.C.; Ordonez-Regil E.; Crawford E.R.; Tropina E.F.; Hornung E.; Groner E.; Lucot E.; Gacia E.; Levesque E.; Benedito E.; Davydov E.A.; Bolzan F.P.; Maestre F.T.; Maunoury-Danger F.; Kitz F.; Hofhansl F.; Hofhansl G.; De Almeida Lobo F.; Souza F.L.; Zehetner F.; Koffi F.K.; Wohlfahrt G.; Certini G.; Pinha G.D.; Gonzlez G.; Canut G.; Pauli H.; Bahamonde H.A.; Feldhaar H.; Jger H.; Serrano H.C.; Verheyden H.; Bruelheide H.; Meesenburg H.; Jungkunst H.; Jactel H.; Kurokawa H.; Yesilonis I.; Melece I.; Van Halder I.; Quiros I.G.; Fekete I.; Ostonen I.; Borovsk J.; Roales J.; Shoqeir J.H.; Jean-Christophe Lata J.; Probst J.-L.; Vijayanathan J.; Dolezal J.; Sanchez-Cabeza J.-A.; Merlet J.; Loehr J.; Von Oppen J.; Loffler J.; Benito Alonso J.L.; Cardoso-Mohedano J.-G.; Penuelas J.; Morina J.C.; Quinde J.D.; Jimnez J.J.; Alatalo J.M.; Seeber J.; Kemppinen J.; Stadler J.; Kriiska K.; Van Den Meersche K.; Fukuzawa K.; Szlavecz K.; Juhos K.; Gerhtov K.; Lajtha K.; Jennings K.; Jennings J.; Ecology P.; Hoshizaki K.; Green K.; Steinbauer K.; Pazianoto L.; Dienstbach L.; Yahdjian L.; Williams L.J.; Brigham L.; Hanna L.; Hanna H.; Rustad L.; Morillas L.; Silva Carneiro L.; Di Martino L.; Villar L.; Fernandes Tavares L.A.; Morley M.; Winkler M.; Lebouvier M.; Tomaselli M.; Schaub M.; Glushkova M.; Torres M.G.A.; De Graaff M.-A.; Pons M.-N.; Bauters M.; Mazn M.; Frenzel M.; Wagner M.; Didion M.; Hamid M.; Lopes M.; Apple M.; Weih M.; Mojses M.; Gualmini M.; Vadeboncoeur M.; Bierbaumer M.; Danger M.; Scherer-Lorenzen M.; Ruek M.; Isabellon M.; Di Musciano M.; Carbognani M.; Zhiyanski M.; Puca M.; Barna M.; Ataka M.; Luoto M.; H. Alsafaran M.; Barsoum N.; Tokuchi N.; Korboulewsky N.; Lecomte N.; Filippova N.; Hlzel N.; Ferlian O.; Romero O.; Pinto-Jr O.; Peri P.; Dan Turtureanu P.; Haase P.; Macreadie P.; Reich P.B.; Petk P.; Choler P.; Marmonier P.; Ponette Q.; Dettogni Guariento R.; Canessa R.; Kiese R.; Hewitt R.; Weigel R.; Kanka R.; Cazzolla Gatti R.; Martins R.L.; Ogaya R.; Georges R.; Gaviln R.G.; Wittlinger S.; Puijalon S.; Suzuki S.; Martin S.; Anja S.; Gogo S.; Schueler S.; Drollinger S.; Mereu S.; Wipf S.; Trevathan-Tackett S.; Stoll S.; Lfgren S.; Trogisch S.; Seitz S.; Glatzel S.; Venn S.; Dousset S.; Mori T.; Sato T.; Hishi T.; Nakaji T.; Jean-Paul T.; Camboulive T.; Spiegelberger T.; Scholten T.; Mozdzer T.J.; Kleinebecker T.; Runk T.; Ramaswiela T.; Hiura T.; Enoki T.; Ursu T.-M.; Di Cella U.M.; Hamer U.; Klaus V.; Di Cecco V.; Rego V.; Fontana V.; Piscov V.; Bretagnolle V.; Maire V.; Farjalla V.; Pascal V.; Zhou W.; Luo W.; Parker W.; Parker P.; Kominam Y.; Kotrocz Z.; Utsumi Y
A model intercomparison project to study the role of plant functional diversity in the response of tropical forests to drought
Uncertainty in how the land carbon (C) sink will change over time contributes to uncertainty in Earth system model (ESM) projections of climate change. Much of the land sink is thought to reside in old-growth tropical forests, but recent analyses suggest a diminishing C sink in these forests due to rising temperatures and drought. Thus, there is an urgent need to better understand tropical forest responses to drought and to incorporate this understanding into ESMs. Previous work with vegetation demographic models (VDMs) – which represent the dynamics of individuals or cohorts, along with hydrology and biogeochemistry − suggest that functional diversity can enhance tropical forest resilience to climate change. However, there is little understanding of how different approaches to representing trait diversity and demography affect model outcomes. To explore the potential for trait diversity to moderate tropical forest responses to drought, we explored the behavior of nine VDMs, ranging from models with detailed site-level parameterizations to more generalized land models designed as ESM components. The behavior of each model was studied using soil and meteorological data collected at each of two tropical forest sites: Paracou Research Station, French Guiana, and Tapajos National Forest, Brazil. Low and high trait-diversity scenarios were simulated for each model using historical meteorology, as well as reduced rainfall scenarios.
Few models showed strong effects of trait diversity on drought resistance (short-term response of forest biomass to rainfall reduction), but most models showed positive effects of diversity on resilience (long-term recovery of forest biomass following the initial biomass loss due to rainfall reduction). Long-term recovery was always associated with shifts in community composition towards greater drought-tolerance. However, there were large differences among models in the degree and time-scale of recovery. These differences were unrelated to the goodness-of-fit of model predictions to observations of biomass, productivity, and soil moisture, suggesting that site-level calibration of model parameters is unlikely to strongly affect biodiversity-ecosystem functioning relationships in VDMs. Rather, the degree to which diversity moderated drought responses depended on which axes of trait variation were represented in the model, as well as model assumptions that affect the time-scale over which community composition shifts in response to environmental change. Our study suggests that incorporating trait diversity and demography into ESMs would likely lead to altered climate projections, but additional empirical and modeling work is needed to provide the ESM community with clear guidance on model development
Drivers of tropical forest loss between 2008 and 2019
During December 2020, a crowdsourcing campaign to understand what has been driving tropical forest loss during the past decade was undertaken. For 2 weeks, 58 participants from several countries reviewed almost 115 K unique locations in the tropics, identifying drivers of forest loss (derived from the Global Forest Watch map) between 2008 and 2019. Previous studies have produced global maps of drivers of forest loss, but the current campaign increased the resolution and the sample size across the tropics to provide a more accurate mapping of crucial factors leading to forest loss. The data were collected using the Geo-Wiki platform (www.geo-wiki.org) where the participants were asked to select the predominant and secondary forest loss drivers amongst a list of potential factors indicating evidence of visible human impact such as roads, trails, or buildings. The data described here are openly available and can be employed to produce updated maps of tropical drivers of forest loss, which in turn can be used to support policy makers in their decision-making and inform the public
Methodology for generating a global forest management layer
The first ever global map of forest management was generated based on remote sensing data. To collect training data, we launched a series of Geo-Wiki (https://www.geo-wiki.org/) campaigns involving forest experts from different world regions, to explore which information related to forest management could be collected by visual interpretation of very high-resolution images from Google Maps and Microsoft Bing, Sentinel time series and normalized difference vegetation index (NDVI) profiles derived from Google Earth Engine. A machine learning technique was then used with the visually interpreted sample (280K locations) as a training dataset to classify PROBA-V satellite imagery. Finally, we obtained a global wall-to-wall map of forest management at a 100m resolution for the year 2015. The map includes classes such as intact forests; forests with signs of management, including logging; planted forests; woody plantations with a rotation period up to 15 years; oil palm plantations; and agroforestry. The map can be used to deliver further information about forest ecosystems, protected and observed forest status changes, biodiversity assessments, and other ecosystem-related aspects
Global forest management data for 2015 at a 100 m resolution
Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services
Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes
Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate. © Copyright © 2021 Kwon, Shibata, Kepfer-Rojas, Schmidt, Larsen, Beier, Berg, Verheyen, Lamarque, Hagedorn, Eisenhauer, Djukic and TeaComposition Network