30,382 research outputs found

    An investigation of the aerodynamic characteristics of a new general aviation airfoil in flight

    Get PDF
    A low speed airfoil, the GA(W)-2, - a 13% thickness to chord ratio airfoil was evaluated. The wing of a Beech Sundowner was modified at by adding balsa ribs and covered with aluminum skin, to alter the existing airfoil shape to that of the GA(W)-2 airfoil. The aircraft was flown in a flight test program that gathered wing surface pressures and wake data from which the lift drag, and pitching moment of the airfoil could be determined. After the base line performance of the airfoil was measured, the drag due to surface irregularities such as steps, rivets and surface waviness was determined. The potential reduction of drag through the use of surface coatings such as KAPTON was also investigated

    Thermochromism of Model Organic Aerosol Matter

    Get PDF
    Laboratory experiments show that the optical absorptivity of model organic matter is not an intrinsic property, but a strong function of relative humidity, temperature, and insolation. Suites of representative polyfunctional C_(x)H_(y)O_(z) oligomers in water develop intense visible absorptions upon addition of inert electrolytes. The resulting mixtures reach mass absorption cross sections σ(532 nm) ~ 0.1 m^(2)/gC in a few hours, absorb up to 9 times more solar radiation than the starting material, can be half-bleached by noon sunlight in ~ 1 h, and can be repeatedly recycled without carbon loss. Visible absorptions red-shift and evolve increasingly faster in subsequent thermal aging cycles. Thermochromism and its strong direct dependences on ionic strength and temperature are ascribed to the dehydration of >CH−C(OH)C═C< unsaturations by a polar E1 mechanism, and bleaching to photoinduced retrohydration. These transformations are deemed to underlie the daily cycles of aerosol absorption observed in the field, and may introduce a key feedback in the earth’s radiative balance

    Water tracers in the ECHAM general circulation model

    Get PDF

    Spectral properties and geology of bright and dark material on dwarf planet Ceres

    Full text link
    Variations and spatial distributions of bright and dark material on dwarf planet Ceres play a key role in understanding the processes that have led to its present surface composition. We define limits for bright and dark material in order to distinguish them consistently, based on the reflectance of the average surface using Dawn Framing Camera data. A systematic classification of four types of bright material is presented based on their spectral properties, composition, spatial distribution, and association with specific geomorphological features. We found obvious correlations of reflectance with spectral shape (slopes) and age; however, this is not unique throughout the bright spots. Although impact features show generally more extreme reflectance variations, several areas can only be understood in terms of inhomogeneous distribution of composition as inferred from Dawn Visible and Infrared Spectrometer data. Additional material with anomalous composition and spectral properties are rare. The identification of the composition and origin of the dark, particularly the darkest material, remains to be explored. The spectral properties and the morphology of the dark sites suggest an endogenic origin, but it is not clear whether they are more or less primitive surficial exposures or excavated subsurface but localized material. The reflectance, spectral properties, inferred composition, and geologic context collectively suggest that the bright and dark material tends to gradually change toward the average surface over time. This could be because of multiple processes, i.e., impact gardening/space weathering, and lateral mixing, including thermal and aqueous alteration, accompanied by changes in composition and physical properties such as grain size, surface temperature, and porosity (compaction).Comment: Meteoritics and Planetary Science; Dawn at Ceres special issu

    KWISP: an ultra-sensitive force sensor for the Dark Energy sector

    Get PDF
    An ultra-sensitive opto-mechanical force sensor has been built and tested in the optics laboratory at INFN Trieste. Its application to experiments in the Dark Energy sector, such as those for Chameleon-type WISPs, is particularly attractive, as it enables a search for their direct coupling to matter. We present here the main characteristics and the absolute force calibration of the KWISP (Kinetic WISP detection) sensor. It is based on a thin Si3N4 micro-membrane placed inside a Fabry-Perot optical cavity. By monitoring the cavity characteristic frequencies it is possible to detect the tiny membrane displacements caused by an applied force. Far from the mechanical resonant frequency of the membrane, the measured force sensitivity is 5.0e-14 N/sqrt(Hz), corresponding to a displacement sensitivity of 2.5e-15 m/sqrt(Hz), while near resonance the sensitivity is 1.5e-14 N/sqrt(Hz), reaching the estimated thermal limit, or, in terms of displacement, 7.5e-16 N/sqrt(Hz). These displacement sensitivities are comparable to those that can be achieved by large interferometric gravitational wave detectors.Comment: 9 pages, 8 figures in colo

    A novel IEF peptide fractionation method reveals a detailed profile of N-terminal Acetylation in chemotherapy-responsive and -resistant ovarian cancer cells

    Get PDF
    Although acetylation is regarded as a common protein modification, a detailed proteome wide profile of this posttranslational modification may reveal important biological insight regarding differential acetylation of individual proteins. Here we optimised a novel peptide IEF fractionation method for use prior to LC-MS/MS analysis in order to obtain a more in depth coverage of N-terminally acetylated proteins from complex samples. Application of the method to the analysis of the serous ovarian cancer cell line OVCAR-5 identified 341 N-terminally acetylated proteins, 23 of which are previously un-reported. The protein peptidyl-prolyl cis-trans isomerase A (PPIA) was detected in both the N-terminally acetylated and un-modified forms, and was further analysed by data independent acquisition in Carboplatin responsive parental OVCAR-5 cells and Carboplatin resistant OVCAR-5 cells. This revealed a higher ratio of un-acetylated to acetylated N-terminal PPIA in the parental compared to the Carboplatin resistant OVCAR-5 cells, and a 4.1-fold increase in PPIA abundance overall in the parental cells relative to Carboplatin-resistant OVCAR-5 cells (P = 0.015). In summary, the novel IEF peptide fractionation method presented here is robust, reproducible, and can be applied to the profiling of N-terminally acetylated proteins. All mass spectrometry data is available as a ProteomeXchange repository (PXD003547).Florian Weiland, Georgia Arentz, Manuela Klingler-Hoffmann, Peter McCarthy, Noor A. Lokman, Gurjeet Kaur, Martin K. Oehler, and Peter Hoffman
    corecore