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Abstract

An ultra-sensitive opto-mechanical force sensor has been built and tested in

the optics laboratory at INFN Trieste. Its application to experiments in the

Dark Energy sector, such as those for Chameleon-type WISPs, is particularly

attractive, as it enables a search for their direct coupling to matter. We present

here the main characteristics and the absolute force calibration of the KWISP

(Kinetic WISP detection) sensor. It is based on a thin Si3N4 micro-membrane

placed inside a Fabry-Perot optical cavity. By monitoring the cavity charac-

teristic frequencies it is possible to detect the tiny membrane displacements

caused by an applied force. Far from the mechanical resonant frequency of the

membrane, the measured force sensitivity is 2.0 · 10−13 N/
√
Hz, corresponding

to a displacement sensitivity of 1.0 · 10−14 m/
√
Hz, while near resonance the

sensitivity is 6.0 · 10−14 N/
√
Hz, reaching the estimated thermal limit, or, in

terms of displacement, 3.0 · 10−15 m/
√
Hz. These displacement sensitivities are

comparable to those that can be achieved by large interferometric gravitational

wave detectors.
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interferometer

PACS: [2010] 07.60.Ly, 95.55.Vj, 95.36.+x

1. Introduction

We have developed an ultra-sensitive opto-mechanical force sensor that can

be applied, among other things, to searches for WISP-type particles (Weakly

Interacting Slim Particles) able to interact with ordinary matter with a strength

similar to matter-matter interactions. In particular, we intend to shortly use5

this sensor, called KWISP for "Kinetic WISP detection", to detect the hy-

pothetical flux of Chameleons produced in the sun by exploiting their local

density-dependent direct coupling to matter. A flux of solar Chameleons will

exert the equivalent of a radiation pressure when impinging at a grazing in-

cidence angle on a solid surface [1, 2]. The KWISP sensor consists of a thin10

and rigid dielectric membrane suspended inside a resonant optical Fabry-Perot

cavity. The collective force exerted by solar Chameleons bouncing off the mem-

brane surface excites its vibrational states and causes a displacement from its

equilibrium position. If a laser beam is frequency-locked to the cavity by means

of an active electro-optical feedback system [3], a membrane displacement from15

the initial position will cause cavity mode frequencies to experience a shift [4, 5],

which is then sensed in the feedback correction signal. The sensor thus trans-

duces displacement (force) into an electrical signal with a gain proportional to

the finesse of the Fabry-Perot cavity. Figure 1 shows a pictorial representation

of the KWISP sensor working principle. The displacement sensitivity can be20

enhanced by exploiting the fact that the membrane is a mechanical resonator

with a large figure of merit (Q factor): if an external force acts on it at the

resonant frequency, resulting displacements are amplified by Q.

After a description of the sensor itself, we will present measurements done

in the INFN Trieste optics laboratory to characterise it and determine its sensi-25

tivity with the direct application of an external force generated by the radiation

pressure of an auxiliary laser beam. In the conclusions we will briefly expound
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Figure 1: Sketch of the KWISP sensor working principle. The membrane flexes under the

action of a time-dependent external force and perturbs the resonance configuration of the

intra-cavity electric field (here represented pictorially with an arbitrary beam profile). This

in turn causes a shift in the cavity resonant frequencies, which can then be sensed by the

feedback keeping laser and cavity in lock (see also text).

on the perspective applications to solar Chameleon searches and to the study

of short distance interactions.

2. The KWISP force sensor30

A KWISP force sensor is presently installed in the optics laboratory at INFN

Trieste. The main element of the sensor is a vacuum chamber containing an 85

mm long Fabry-Perot cavity made with two 1-inch diameter, 100 cm curvature

radius, high-reflectivity, multilayer dielectric mirrors (made by ATFilms, Boul-

der, Co., USA). The mirror transmission coefficients are 5.0 · 10−5 and 0.50 at35

1064 nm and 532 nm, respectively. Each mirror is mounted on a two-axis, piezo-

actuated, tilting mount (Agilis series by Newport, USA), which is in turn fixed

to a common base. A Si3N4, 5x5 mm2, 100 nm thick membrane (made by Nor-

cada Inc., Canada) is inserted in a holder mounted on a 5-axis movement stage,

allowing movement of the membrane along 3 linear axes, one of which parallel40

to the cavity axis, and tilting of it around two additional axes. The reflectivity

coefficients for this membrane are 0.10 at 1064 nm, and 0.25 at 532 nm. Using

this mechanical assembly, the membrane is initially placed approximately mid-

way between the two cavity mirrors (membrane-in-the-middle configuration).

Figure 2 shows a photograph of the membrane holder with the (5 mm)x(5 mm)45
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Figure 2: Photograph of the membrane holder. The Si3N4 membrane itself is visible as a

square-shaped window inside the holder. Membrane dimensions: (5 mm)x(5 mm)x(100 nm).

membrane inside.

The membrane tilting motion is piezo-actuated, similarly to the cavity mir-

ror mounts, and allows one to align the membrane surface parallel to the mirror

reflecting surfaces or, equivalently, to align it normal to the cavity axis. Finally,

the linear membrane movement along the cavity axis is also piezo actuated (us-50

ing a piezo chip made by Piezomechanik, Germany) to allow remote positioning

of the membrane along the cavity axis with an enhanced nanometer resolu-

tion. The cavity-membrane mechanical assembly is visible in the photograph of

Figure 3.

The Fabry-Perot cavity is excited using a CW 1064 nm laser beam emitted55

by a Nd:YAG laser (Prometheus model by Innolight, Germany). This laser is

also capable of emitting a second, frequency doubled, CW beam at 532 nm

which is used as an auxiliary beam for alignment and for exerting an external

pressure on the membrane, as described below. Figure 4 shows a schematic

layout of the KWISP sensor optical system.60

The layout shown in the figure represents a two-beam setup: a 1064 nm
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Figure 3: Photograph of the interior of the KWISP sensor vacuum chamber. The membrane

holder fixed on its 5-axis mount is visible at center. Cavity mirrors are visible at upper left

and lower right. An auxiliary green light beam is used to highlight the main components (see

also text).
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Figure 4: Schematic layout of the KWISP sensor optical system (see text for a detailed

description).

sensing beam (in red in the figure) and a 532 nm pump beam (in green in the

figure). The sensing beam is kept at resonance with the cavity by means of an

electro-optic feedback system [3], and serves to detect membrane displacements.

The feedback system (unity gain frequency 60 kHz, [3]) corrects, in different fre-65

quency ranges, both for mirror movements and for membrane movements. The

measured force sensitivity is, however, not affected, as it is obtained directly

from the radiation pressure force exerted by the photons of the pump beam.

For the same reason, we do not compensate for possible mirror/membrane rel-

ative movements as these are automatically taken into account with the direct70

force calibration. The pump beam is injected in the cavity superimposed on the

sensing beam and exerts a pressure on the membrane by reflecting off it. Imme-

diately after leaving the laser head, the sensing beam passes through a half-wave

plate (HWP) and a polarising beam-splitter (PBS), which allow a controlled at-

tenuation of the beam intensity from a about 800 mW of CW power down to75

the few mW sufficient for sensor operation. The beam rejected by the PBS is
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directed onto a beam dump. After attenuation the beam, which is linearly po-

larised normal to the optical bench surface, traverses a Faraday isolator having

the function of preventing the beam reflected back from the cavity input mir-

ror (CM1) from re-entering the laser cavity and causing instabilities. A second80

HWP is placed after the Faraday isolator to maximise the intensity transmitted

through a second PBS downstream, which allows concurrent injection of the

sensing and of the pump beam into the cavity. A matching telescope, consisting

of a divergent lens L2 and of a convergent lens L1, has the function of adapting

the curvature of the laser beam wavefronts to match the curvature of the cavity85

mirrors CM1 and CM2, at their respective positions, in order to maximise the

light power coupled into the cavity at resonance. The sensing beam is then

injected into the Fabry-Perot cavity through a set of steering mirrors (repre-

sented by M3 and M4 in the figure). The cavity itself is formed by the two

nearly-identical, multi-layer, dielectric mirrors CM1 and CM2. The membrane90

is also schematically represented in the figure. The nominal cavity finesse was

60000, and without the membrane a finesse of 59000 was actually measured.

With the membrane inside the finesse was ≈ 30000.We attribute the difference

to losses inside the cavity, mainly scattering from the membrane. We remark

here that, however, a finesse measurement is not necessary to obtain the sensi-95

tivity thanks to the pump beam technique. Light exiting the cavity at resonance

passes through a third PBS which further splits it into two beams: one is di-

rected to a CCD camera, used to image the cavity spatial modes for diagnostic

and alignment purposes, while the other one is focussed by the convergent lens

L4 onto the surface of a photodiode (PDT). The PDT "transmission" photo-100

diode is instrumented with a low-noise, wide-band transimpedance amplifier

(Mod. DLPCA-200, by FEMTO, Germany). Light reflected from the cavity

propagates backwards through the system up to the Faraday isolator, which

steers it to mirror M1, through the convergent lens L3 and onto a second pho-

todiode (PDR, equipped with a Mod. DHPCA-100 transimpedance amplifier105

by FEMTO, Germany). The back-reflected light intensity is used for diagnostic

purposes and also as an input for the electro-optic feedback system keeping the
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laser frequency continuously at resonance with the cavity. This system (not

represented in Figure 4) is called the Pound-Drever-Hall feedback from its in-

ventors, and is described in [3] and references therein. For the purposes of the110

present work it sufficient to note that the system works by analyzing the back-

reflected beam to obtain a signal proportional to the instantaneous difference

between the laser frequency and the cavity frequency. This signal, called the er-

ror signal, is then amplified and fed back into the laser to control its frequency.

The error signal, therefore, contains the information of how the cavity frequency115

shifts, and it is the signal from which membrane displacement is detected. The

532 nm pump beam is generated inside the laser by frequency duplication of

the main 1064 nm beam through a suitable non-linear crystal. This beam is

amplitude-modulated by means of an electro-optic crystal excited with a sine

signal at a chosen frequency (EOM, mod. 4104 by NewFocus, USA). It is then120

aligned on top of the main 1064 nm beam by means of a PBS (see Figure 4)

and, after passing through the first cavity mirror CM1, reflects off the membrane

causing a time dependent force on it. A laser-line filter inserted before the PDR

prevents 532 nm light from reaching it. Given a cavity mirror reflectivity of 0.50

at 532 nm, and a slight misalignment with respect to the cavity optical axis,125

the pump beam does not resonate inside the cavity. The beam waist on the

membrane is 260 µm at 1064 nm, and 3.0 mm at 532 nm. With respect to the

force sensor the pump beam plays, for instance, the same role that a calibration

source plays for a standard radiation detector. Figure 5 shows a photograph of

the optical bench hosting the KWISP sensor as seen from the laser head.130

3. Sensor calibration and sensitivity

During operation the KWISP sensor is in static vacuum with a residual

pressure < 10−3 mbar and the whole apparatus is at room temperature. To

set the sensor in working mode the Fabry-Perot cavity is frequency locked to

the laser. The locking status is monitored by observing on an oscilloscope the135

control signals from the feedback circuit and the light intensities reflected and
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Figure 5: Photograph of the KWISP optical bench as seen from the laser head. The vacuum

chamber containing the cavity-membrane assembly is visible at back center. The paths of the

two CW beams emitted by the laser are evidenced in the picture. The sensing beam, at 1064

nm, is kept at resonance with the cavity by means of a feedback system and serves to detect

membrane displacements. The pump beam, at 532 nm, is injected in the cavity parallel to the

sensing beam and exerts a pressure on the membrane by reflecting off it (see also text).
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transmitted by the cavity under lock.

The error signal is proportional to the instantaneous frequency difference

between laser and cavity and its power spectrum contains the information on

membrane displacements. To obtain this spectral density, the error signal is fed140

into an HP35660A Spectrum Analyser, which directly outputs spectral data to

a data acquisition computer. In order to achieve an absolute calibration of the

sensitivity in terms of force, the pump beam is then injected onto the membrane

and amplitude-modulated as described above. The pump light power impinging

on the membrane was 600 µW, and given a measured membrane reflectivity of145

0.25 ± 0.01 at 532 nm, the light power from the pump beam reflected off the

membrane was 165 µW. Taking into account a modulation index of 0.283 at

9.045 kHz, we find that the maximum amplitude of the light power reflected

from the membrane in these conditions is 47 µW, corresponding to a net force

of 3.1 ·10−13 N. The presence of this force is detected as a peak in the measured150

spectrum of the error signal. Figure 6 shows the power spectrum of the error

signal measured when the pump beam is modulated at 9.045 kHz. This value

was chosen to fall in a low noise region in the power spectrum of the error signal.

The bandwidth of the amplifier-modulator system was also taken into account

in order to achieve maximum depth of modulation with no distortion. The large155

peak visible in the plot corresponds to the amplitude of the force directly exciting

the membrane, while the background is mainly due to electronic noise in the

locking circuit. Since the amplitude of the exciting force is independently known,

the sensitivity of the sensor can be obtained from the measured signal-to-noise

ratio (SNR). With reference to Figure 6 , we find SNR = 10, therefore for the160

chosen integration time of 40 s, one has a force sensitivity of 2.0 ·10−13 N/
√
Hz.

Recall that this value represents the minimum force amplitude acting on the

membrane detectable in 1 s.

To illustrate the scaling of the measured background level with the square

root of integration time, Table 1 gives a series of absolute sensitivity measure-165

ments done with different integration times.

The membrane is actually a mechanical oscillator, and its behaviour can
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Figure 6: Power spectrum of the cavity feedback error signal when the pump beam is amplitude

modulated at 9.045 kHz. The large peak indicates that the membrane is being excited by an

external force, while the background is mainly due to electronic noise in the locking circuit.

(see text).

Table 1: Background level as a function of integration time measured near the calibration

peak

Integration time [s] Background level [nV] Sensitivity [fN]

5 560 80

20 316 45

40 180 26
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be modelled using a finite element analysis software to obtain its fundamental

resonant frequency and its equivalent spring constant. From these simulations

we can assume a spring constant of ≈ 20 N/m (this value compares well with the170

30 N/m quoted for instance in [6]). Then the equivalent displacement sensitivity

of the KWISP sensor is 1.0 · 10−14 m/
√
Hz at 9.045 kHz.

The mechanical oscillator behaviour of the membrane and its fundamental

resonant frequency can be directly measured with the pump beam technique.

Figure 7 shows the power spectrum of the cavity feedback error signal around175

82 kHz when the membrane is excited by a pump beam amplitude-modulated

at 9.045 kHz, that is, off the expected fundamental mechanical resonance fre-

quency of the membrane. The red curve in the plot of Figure 7 gives the power

spectrum measured when no pump beam is present, showing the presence of a

spurious peak generated in the electronics. The blue curve represents the spec-180

trum measured with the pump beam on, and shows the appearance of a peak

at ≈ 82.5 kHz. This peak is due to energy from the pump beam coupling to the

fundamental mechanical resonant mode of the membrane.

Given the measured fundamental mechanical frequency of the membrane,

one can further investigate the behaviour of the membrane by exciting it with185

a pump beam amplitude-modulated at frequencies around the mechanical reso-

nant frequency. Preliminary measurements indicate a membrane quality factor

of Qmeas ≈ 3000 and a sensitivity of 6.0 · 10−14 N/
√
Hz. The measured Q

factor is lower than quality factors in excess of 105 routinely found in the lit-

erature [7, 8]. We attribute our poorer quality factor from these preliminary190

measurements to an insufficiently low residual gas pressure in the sensor vacuum

chamber, which dampens membrane oscillations. The sensitivity, on the other

hand, is near the 300 K thermal limit estimated using the measured Q [6].

4. Conclusions

We have built an ultra-sensitive, opto-mechanical force sensor, called KWISP,195

which is now in operation in the optics laboratory at INFN Trieste. The sensor
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Figure 7: Plot of the power spectrum of the error signal around 82 kHz with the pump beam

OFF (red curve) and ON (blue curve). Recall that the pump beam is in this case amplitude-

modulated at 9.045 kHz (see also text).
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is based on a thin micro-membrane inserted in a Fabry-Perot optical resonant

cavity. An absolute calibration of the force sensitivity of this device has been

obtained by exciting the membrane with an amplitude modulated light beam.

The off-resonance measured force sensitivity is 3.0 · 10−13 N/
√
Hz, correspond-200

ing to a sensitivity to membrane displacements of 1.0 · 10−14 m/
√
Hz. Note

that this distance is comparable to the average radius of an atomic nucleus.

Preliminary measurements around resonance indicate a thermally-limited force

sensitivity of 6.0 · 10−14 N/
√
Hz, corresponding to a displacement sensitivity of

3.0 · 10−15 m/
√
Hz. This figure is comparable to the displacement sensitivities205

achieved by large interferometric gravitational wave detectors [9], while our sen-

sor is of course not as sensitive in terms of gravitational waves, given the much

shorter length of the Fabry-Perot cavity. For the KWISP sensor under better

vacuum it is reasonable to expect Q ≈ 105 [6], giving a thermally-limited sensi-

tivity of ≈ 2.5 · 10−15 N/
√
Hz. A further factor of >100 in sensitivity could be210

gained by cooling the membrane from room temperature down to sub-K tem-

peratures (30 mK for instance). In this case the projected sensitivity is as low

as ≈ 8.0 · 10−18 N/
√
Hz. An immediate application we foresee for the KWISP

force-sensor is in the search for Chameleon-type scalar WISPs [2] to be con-

ducted shortly at CAST [10], with the use of the "chameleon chopper" device215

which we have invented to modulate the flux of solar chameleon, and thus the

amplitude of the force by a chameleon beam on the KWISP membrane [11].

There, in CAST, one will exploit both the sun-tracking capability of the move-

able magnet carriage, and the presence of an X-ray telescope, which acts also

as a focussing device for Chameleons. The extreme sensitivity of the KWISP220

sensor to tiny displacement makes it also suitable and very attractive for appli-

cations in the field of the experimental study of interactions at short distances,

with immediate impact on the physics of extra-dimensions and quantum gravity

[12, 13, 14, 15].
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