802 research outputs found
Distributed Modeling of Ablation (1996–2011) and Climate Sensitivity on the Glaciers of Taylor Valley, Antarctica
The McMurdo Dry Valleys of Antarctica host the coldest and driest ecosystem on Earth, which is acutely sensitive to the availability of water coming from glacial runoff. We modeled the spatial variability in ablation and assessed climate sensitivity of the glacier ablation zones using 16 years of meteorological and surface mass-balance observations collected in Taylor Valley. Sublimation was the primary form of mass loss over much of the ablation zones, except for near the termini where melt, primarily below the surface, dominated. Microclimates in ~10 m scale topographic basins generated melt rates up to ten times higher than over smooth glacier surfaces. In contrast, the vertical terminal cliffs on the glaciers can have higher or lower melt rates than the horizontal surfaces due to differences in incoming solar radiation. The model systematically underpredicted ablation for the final 5 years studied, possibly due to an increase of windblown sediment. Surface mass-balance sensitivity to temperature was ~−0.02 m w.e. K−1, which is among the smallest magnitudes observed globally. We also identified a high sensitivity to ice albedo, with a decrease of 0.02 having similar effects as a 1 K increase in temperature, and a complex sensitivity to wind speed
Near-Surface Internal Melting: a Substantial Mass Loss on Antarctic Dry Valley Glaciers
The McMurdo Dry Valleys, southern Victoria Land, East Antarctica, are a polar desert, and melt from glacial ice is the primary source of water to streams, lakes and associated ecosystems. Previous work found that to adequately model glacier ablation and subsurface ice temperatures with a surface energy-balance model required including the transmission of solar radiation into the ice. Here we investigate the contribution of subsurface melt to the mass balance of (and runoff from) Dry Valley glaciers by including a drainage process in the model and applying the model to three glacier sites using 13years of hourly meteorological data. Model results for the smooth glacier surfaces common to many glaciers in the Dry Valleys showed that sublimation was typically the largest component of surface lowering, with rare episodes of surface melting, consistent with anecdotal field observations. Results also showed extensive internal melting 5-15 cm below the ice surface, the drainage of which accounted for 50% of summer ablation. This is consistent with field observations of subsurface streams and formation of a weathering crust. We identify an annual cycle of weathering crust formation in summer and its removal during the 10 months of winter sublimation
Distributed modeling of ablation (1996–2011) and climate sensitivity on the glaciers of Taylor Valley, Antarctica
The McMurdo Dry Valleys of Antarctica host the coldest and driest ecosystem on Earth, which is acutely sensitive to the availability of water coming from glacial runoff. We modeled the spatial variability in ablation and assessed climate sensitivity of the glacier ablation zones using 16 years of meteorological and surface mass-balance observations collected in Taylor Valley. Sublimation was the primary form of mass loss over much of the ablation zones, except for near the termini where melt, primarily below the surface, dominated. Microclimates in ~10 m scale topographic basins generated melt rates up to ten times higher than over smooth glacier surfaces. In contrast, the vertical terminal cliffs on the glaciers can have higher or lower melt rates than the horizontal surfaces due to differences in incoming solar radiation. The model systematically underpredicted ablation for the final 5 years studied, possibly due to an increase of windblown sediment. Surface mass-balance sensitivity to temperature was ~−0.02 m w.e. K−1, which is among the smallest magnitudes observed globally. We also identified a high sensitivity to ice albedo, with a decrease of 0.02 having similar effects as a 1 K increase in temperature, and a complex sensitivity to wind speed
Using Gamma-Ray Burst Prompt Emission to Probe Relativistic Shock Acceleration
It is widely accepted that the prompt transient signal in the 10 keV - 10 GeV
band from gamma-ray bursts (GRBs) arises from multiple shocks internal to the
ultra-relativistic expansion. The detailed understanding of the dissipation and
accompanying acceleration at these shocks is a currently topical subject. This
paper explores the relationship between GRB prompt emission spectra and the
electron (or ion) acceleration properties at the relativistic shocks that
pertain to GRB models. The focus is on the array of possible high-energy
power-law indices in accelerated populations, highlighting how spectra above 1
MeV can probe the field obliquity in GRB internal shocks, and the character of
hydromagnetic turbulence in their environs. It is emphasized that diffusive
shock acceleration theory generates no canonical spectrum at relativistic MHD
discontinuities. This diversity is commensurate with the significant range of
spectral indices discerned in prompt burst emission. Such system diagnostics
are now being enhanced by the broadband spectral coverage of bursts by the
Fermi Gamma-Ray Space Telescope; while the Gamma-Ray Burst Monitor (GBM)
provides key diagnostics on the lower energy portions of the particle
population, the focus here is on constraints in the non-thermal, power-law
regime of the particle distribution that are provided by the Large Area
Telescope (LAT).Comment: 15 pages, 2 figures. Accepted for publication in Advances of Space
Researc
Recommended from our members
Mutations in topoisomerase IIβ result in a B cell immunodeficiency.
B cell development is a highly regulated process involving multiple differentiation steps, yet many details regarding this pathway remain unknown. Sequencing of patients with B cell-restricted immunodeficiency reveals autosomal dominant mutations in TOP2B. TOP2B encodes a type II topoisomerase, an essential gene required to alleviate topological stress during DNA replication and gene transcription, with no previously known role in B cell development. We use Saccharomyces cerevisiae, and knockin and knockout murine models, to demonstrate that patient mutations in TOP2B have a dominant negative effect on enzyme function, resulting in defective proliferation, survival of B-2 cells, causing a block in B cell development, and impair humoral function in response to immunization
Stereotactic radiosurgery for single brain metastases from non-small cell lung cancer: progression of extracranial disease correlates with distant intracranial failure
BackgroundLimited data exist regarding management of patients with a single brain lesion with extracranial disease due to non-small cell lung cancer (NSCLC).MethodsEighty-eight consecutive patients with a single brain lesion from NSCLC in the presence of extracranial disease were treated with stereotactic radiosurgery (SRS) alone. Local control (LC), distant intracranial failure (DIF), overall survival (OS), and toxicity were assessed. The logrank test was used to identify prognostic variables.ResultsMedian OS was 10.6 months. One-year DIF was 61%; LC 89%. Treatments were delivered in 1-5 fractions to median BED10 = 60Gy. Five patients developed radionecrosis. Factors associated with shortened OS included poor performance status (PS) (p = 0.0002) and higher Recursive Partitioning Analysis class (p = 0.017). For patients with PS 0, median survival was 22 months. DIF was associated with systemic disease status (progressive vs. stable) (p = 0.0001), as was BED (p = 0.021) on univariate analysis, but only systemic disease (p = 0.0008) on multivariate analysis.ConclusionsThis study identifies a patient population that may have durable intracranial control after treatment with SRS alone. These data support the need for prospective studies to optimize patient selection for up-front SRS and to characterize the impact of DIF on patients’ quality of life
Stereotactic radiosurgery for single brain metastases from non-small cell lung cancer: progression of extracranial disease correlates with distant intracranial failure
BackgroundLimited data exist regarding management of patients with a single brain lesion with extracranial disease due to non-small cell lung cancer (NSCLC).MethodsEighty-eight consecutive patients with a single brain lesion from NSCLC in the presence of extracranial disease were treated with stereotactic radiosurgery (SRS) alone. Local control (LC), distant intracranial failure (DIF), overall survival (OS), and toxicity were assessed. The logrank test was used to identify prognostic variables.ResultsMedian OS was 10.6 months. One-year DIF was 61%; LC 89%. Treatments were delivered in 1-5 fractions to median BED10 = 60Gy. Five patients developed radionecrosis. Factors associated with shortened OS included poor performance status (PS) (p = 0.0002) and higher Recursive Partitioning Analysis class (p = 0.017). For patients with PS 0, median survival was 22 months. DIF was associated with systemic disease status (progressive vs. stable) (p = 0.0001), as was BED (p = 0.021) on univariate analysis, but only systemic disease (p = 0.0008) on multivariate analysis.ConclusionsThis study identifies a patient population that may have durable intracranial control after treatment with SRS alone. These data support the need for prospective studies to optimize patient selection for up-front SRS and to characterize the impact of DIF on patients’ quality of life
Evaluation of a novel rash scale and a serum proteomic predictor in a randomized phase II trial of sequential or concurrent cetuximab and pemetrexed in previously treated non-small cell lung cancer
BACKGROUND: Candidate predictive biomarkers for epidermal growth factor receptor inhibitors (EGFRi), skin rash and serum proteomic assays, require further qualification to improve EGFRi therapy in non-small cell lung cancer (NSCLC). In a phase II trial that was closed to accrual because of changes in clinical practice we examined the relationships among candidate biomarkers, quantitative changes in tumor size, progression-free and overall survival. METHODS: 55 patients with progressive NSCLC after platinum therapy were randomized to receive (Arm A) cetuximab, followed by pemetrexed at progression, or (Arm B) concurrent cetuximab and pemetrexed. All received cetuximab monotherapy for the first 14 days. Pre-treatment serum and weekly rash assessments by standard and EGFRi-induced rash (EIR) scales were collected. RESULTS: 43 patients (20-Arm A, 23-Arm B) completed the 14-day run-in. Median survival was 9.1 months. Arm B had better median overall (Arm B = 10.3 [95% CI 7.5, 16.8]; Arm A = 3.5 [2.8, 11.7] months P = 0.046) and progression-free survival (Arm B = 2.3 [1.6, 3.1]; Arm A = 1.6 [0.9, 1.9] months P = 0.11). The EIR scale distributed ratings among 6 rather than 3 categories but ordinal scale rash severity did not predict outcomes. The serum proteomic classifier and absence of rash after 21 days of cetuximab did. CONCLUSIONS: Absence of rash after 21 days of cetuximab therapy and the serum proteomic classifier, but not ordinal rash severity, were associated with NSCLC outcomes. Although in a small study, these observations were consistent with results from larger retrospective analyses. TRIAL REGISTRATION: Clinicaltrials.gov Identifier NCT0020393
- …