It is widely accepted that the prompt transient signal in the 10 keV - 10 GeV
band from gamma-ray bursts (GRBs) arises from multiple shocks internal to the
ultra-relativistic expansion. The detailed understanding of the dissipation and
accompanying acceleration at these shocks is a currently topical subject. This
paper explores the relationship between GRB prompt emission spectra and the
electron (or ion) acceleration properties at the relativistic shocks that
pertain to GRB models. The focus is on the array of possible high-energy
power-law indices in accelerated populations, highlighting how spectra above 1
MeV can probe the field obliquity in GRB internal shocks, and the character of
hydromagnetic turbulence in their environs. It is emphasized that diffusive
shock acceleration theory generates no canonical spectrum at relativistic MHD
discontinuities. This diversity is commensurate with the significant range of
spectral indices discerned in prompt burst emission. Such system diagnostics
are now being enhanced by the broadband spectral coverage of bursts by the
Fermi Gamma-Ray Space Telescope; while the Gamma-Ray Burst Monitor (GBM)
provides key diagnostics on the lower energy portions of the particle
population, the focus here is on constraints in the non-thermal, power-law
regime of the particle distribution that are provided by the Large Area
Telescope (LAT).Comment: 15 pages, 2 figures. Accepted for publication in Advances of Space
Researc