50 research outputs found

    Data-driven and Model-based Verification: a Bayesian Identification Approach

    Full text link
    This work develops a measurement-driven and model-based formal verification approach, applicable to systems with partly unknown dynamics. We provide a principled method, grounded on reachability analysis and on Bayesian inference, to compute the confidence that a physical system driven by external inputs and accessed under noisy measurements, verifies a temporal logic property. A case study is discussed, where we investigate the bounded- and unbounded-time safety of a partly unknown linear time invariant system

    Observer-based correct-by-design controller synthesis

    Get PDF
    Current state-of-the-art correct-by-design controllers are designed for full-state measurable systems. This work first extends the applicability of correct-by-design controllers to partially observable LTI systems. Leveraging 2nd order bounds we give a design method that has a quantifiable robustness to probabilistic disturbances on state transitions and on output measurements. In a case study from smart buildings we evaluate the new output-based correct-by-design controller on a physical system with limited sensor information

    Prediction error identification of linear dynamic networks with rank-reduced noise

    Full text link
    Dynamic networks are interconnected dynamic systems with measured node signals and dynamic modules reflecting the links between the nodes. We address the problem of \red{identifying a dynamic network with known topology, on the basis of measured signals}, for the situation of additive process noise on the node signals that is spatially correlated and that is allowed to have a spectral density that is singular. A prediction error approach is followed in which all node signals in the network are jointly predicted. The resulting joint-direct identification method, generalizes the classical direct method for closed-loop identification to handle situations of mutually correlated noise on inputs and outputs. When applied to general dynamic networks with rank-reduced noise, it appears that the natural identification criterion becomes a weighted LS criterion that is subject to a constraint. This constrained criterion is shown to lead to maximum likelihood estimates of the dynamic network and therefore to minimum variance properties, reaching the Cramer-Rao lower bound in the case of Gaussian noise.Comment: 17 pages, 5 figures, revision submitted for publication in Automatica, 4 April 201

    Local module identification in dynamic networks with correlated noise: the full input case

    Get PDF
    The identification of local modules in dynamic networks with known topology has recently been addressed by formulating conditions for arriving at consistent estimates of the module dynamics, typically under the assumption of having disturbances that are uncorrelated over the different nodes. The conditions typically reflect the selection of a set of node signals that are taken as predictor inputs in a MISO identification setup. In this paper an extension is made to arrive at an identification setup for the situation that process noises on the different node signals can be correlated with each other. In this situation the local module may need to be embedded in a MIMO identification setup for arriving at a consistent estimate with maximum likelihood properties. This requires the proper treatment of confounding variables. The result is an algorithm that, based on the given network topology and disturbance correlation structure, selects an appropriate set of node signals as predictor inputs and outputs in a MISO or MIMO identification setup. As a first step in the analysis, we restrict attention to the (slightly conservative) situation where the selected output node signals are predicted based on all of their in-neighbor node signals in the network.Comment: Extended version of paper submitted to the 58th IEEE Conf. Decision and Control, Nice, 201

    Allocation of Excitation Signals for Generic Identifiability of Linear Dynamic Networks

    Get PDF
    A recent research direction in data-driven modeling is the identification of dynamic networks, in which measured vertex signals are interconnected by dynamic edges represented by causal linear transfer functions. The major question addressed in this paper is where to allocate external excitation signals such that a network model set becomes generically identifiable when measuring all vertex signals. To tackle this synthesis problem, a novel graph structure, referred to as \textit{directed pseudotree}, is introduced, and the generic identifiability of a network model set can be featured by a set of disjoint directed pseudotrees that cover all the parameterized edges of an \textit{extended graph}, which includes the correlation structure of the process noises. Thereby, an algorithmic procedure is devised, aiming to decompose the extended graph into a minimal number of disjoint pseudotrees, whose roots then provide the appropriate locations for excitation signals. Furthermore, the proposed approach can be adapted using the notion of \textit{anti-pseudotrees} to solve a dual problem, that is to select a minimal number of measurement signals for generic identifiability of the overall network, under the assumption that all the vertices are excited

    Single module identifiability in linear dynamic networks

    Get PDF
    A recent development in data-driven modelling addresses the problem of identifying dynamic models of interconnected systems, represented as linear dynamic networks. For these networks the notion network identifiability has been introduced recently, which reflects the property that different network models can be distinguished from each other. Network identifiability is extended to cover the uniqueness of a single module in the network model. Conditions for single module identifiability are derived and formulated in terms of path-based topological properties of the network models.Comment: 6 pages, 2 figures, submitted to Control Systems Letters (L-CSS) and the 57th IEEE Conference on Decision and Control (CDC

    Learning linear modules in a dynamic network using regularized kernel-based methods

    Full text link
    In order to identify one system (module) in an interconnected dynamic network, one typically has to solve a Multi-Input-Single-Output (MISO) identification problem that requires identification of all modules in the MISO setup. For application of a parametric identification method this would require estimating a large number of parameters, as well as an appropriate model order selection step for a possibly large scale MISO problem, thereby increasing the computational complexity of the identification algorithm to levels that are beyond feasibility. An alternative identification approach is presented employing regularized kernel-based methods. Keeping a parametric model for the module of interest, we model the impulse response of the remaining modules in the MISO structure as zero mean Gaussian processes (GP) with a covariance matrix (kernel) given by the first-order stable spline kernel, accounting for the noise model affecting the output of the target module and also for possible instability of systems in the MISO setup. Using an Empirical Bayes (EB) approach the target module parameters are estimated through an Expectation-Maximization (EM) algorithm with a substantially reduced computational complexity, while avoiding extensive model structure selection. Numerical simulations illustrate the potentials of the introduced method in comparison with the state-of-the-art techniques for local module identification.Comment: 15 pages, 7 figures, Submitted for publication in Automatica, 12 May 2020. Final version of paper submitted on 06 January 2021 (To appear in Automatica
    corecore