Dynamic networks are interconnected dynamic systems with measured node
signals and dynamic modules reflecting the links between the nodes. We address
the problem of \red{identifying a dynamic network with known topology, on the
basis of measured signals}, for the situation of additive process noise on the
node signals that is spatially correlated and that is allowed to have a
spectral density that is singular. A prediction error approach is followed in
which all node signals in the network are jointly predicted. The resulting
joint-direct identification method, generalizes the classical direct method for
closed-loop identification to handle situations of mutually correlated noise on
inputs and outputs. When applied to general dynamic networks with rank-reduced
noise, it appears that the natural identification criterion becomes a weighted
LS criterion that is subject to a constraint. This constrained criterion is
shown to lead to maximum likelihood estimates of the dynamic network and
therefore to minimum variance properties, reaching the Cramer-Rao lower bound
in the case of Gaussian noise.Comment: 17 pages, 5 figures, revision submitted for publication in
Automatica, 4 April 201