This work develops a measurement-driven and model-based formal verification
approach, applicable to systems with partly unknown dynamics. We provide a
principled method, grounded on reachability analysis and on Bayesian inference,
to compute the confidence that a physical system driven by external inputs and
accessed under noisy measurements, verifies a temporal logic property. A case
study is discussed, where we investigate the bounded- and unbounded-time safety
of a partly unknown linear time invariant system