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Single module identifiability in linear dynamic networks

Harm Weerts, Paul M.J. Van den Hof and Arne Dankers

Abstract— A recent development in data-driven modeling
addresses the problem of identifying dynamic models of inter-
connected systems, represented as linear dynamic networks. For
these networks the notion of network identifiability has been
introduced recently, which reflects the property that different
network models can be distinguished from each other. Network
identifiability is extended to cover the uniqueness of a single
module in the network model, and conditions for single module
identifiability are derived and formulated in terms of path-
based topological properties of the network models.

I. INTRODUCTION

Systems in engineering are becoming increasingly com-
plex and interconnected. In many control, monitoring and
optimization applications it is advantageous to model a
system as a set of interconnected modules. Linear dynamic
networks are formed by interconnecting modules according
to a structured topology. Given the increasing availability
of sensors, it is attractive to develop tools for data-driven
modeling of linear dynamic networks. There are several
interesting topics of research, including the development of
methods to estimate the dynamics of one, several or all
modules embedded in the network from a given data set,
or estimating its topology [1], [2], [3], [4], [5], [6].

When identifying either a full network or a subnetwork, it
is important that the candidate models can be distinguished
from each other. For this purpose, the concept of network
identifiability has been introduced in [7], as a follow up
on system theoretic results of [1]. In this setting, network
identifiability is dependent on the presence and location of
external excitation signals, on structural information on the
network topology and the disturbance correlation structure.

The analysis in [7] has been concentrated on identifiability
of a full network on the basis of all node variables being
measured. An alternative dual problem is formulated in [8]
where identifiability of all or some of the modules is studied
on the basis of a subset of node signals being measured in a
noise-free network. Duality comes from the fact that in [7]
all nodes are measured but not necessarily excited directly,
while in [8] all nodes are excited directly but not necessarily
measured. In [9] the notion of generic network identifiability
has been explicitly defined, which differs from the definition
in [7] by requiring distinguishability of models for almost
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all of their model coefficient values. With this definition,
the conditions for identifiability can be recast into attractive
path-based conditions on the network topology.

In this paper we will extend the identifiability analysis of
[7] in two different ways. First we will cover identifiability of
a single module in a noise disturbed network, i.e. under what
conditions is a module of interest identifiable? And secondly
we will show that, in line with the approach in [8], [9],
the conditions for identifiability can be formulated as path-
based conditions, if we consider the identifiability concept
in a generic sense. This allows for a simple verification of
identifiability based on the topology of the network models.
Implications due to a change of definition are discussed.

A network setup and the main results of [7] are provided
in Section II. In Section III single module identifiability is
defined and conditions are derived for this property. Then
in Section IV these conditions are formulated as path-based
conditions, for the situation of generic network identifiability.
The definition of identifiability is discussed in Section V.

II. PRELIMINARIES

A. Network setup
Following the basic setup of [5], a dynamic network is

built up out of L scalar internal variables or nodes w j,
j = 1, . . . ,L, and K external variables rk, k = 1, . . .K. Each
internal variable is described as:

w j(t) =
L

∑
l=1
l 6= j

G jl(q)wl(t)+
K

∑
k=1

R jk(q)rk(t)+ v j(t) (1)

where q−1 is the delay operator, i.e. q−1w j(t) = w j(t−1);
• G jl , R jk are proper rational transfer functions, and the

single transfers G jl are referred to as modules.
• rk are external variables that can directly be manipu-

lated by the user;
• v j is process noise, where the vector process v =
[v1 · · ·vL]

T is modelled as a stationary stochastic process
with rational spectral density, such that there exists a p-
dimensional white noise process e := [e1 · · ·ep]

T , p≤ L,
with covariance matrix Λ > 0 such that v(t) = H(q)e(t).

For p = L, H is square, stable, monic and minimum-phase.
The situation p < L is referred to as the rank-reduced noise
case, of which a detailed description can be found in [7].

The L nodes combined lead to the full network expression
w1
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wL
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which results in the matrix equation:

w = Gw+Rr+He. (2)

The network transfer function that maps the external signals r
and e into the node signals w is denoted T (q) = [Twr(q) Twe(q) ]

with Twr(q) := (I−G(q))−1 R(q), (3)

and Twe(q) := (I−G(q))−1 H(q). (4)

As a shorthand notation we use U(q) :=
[
H(q) R(q)

]
. The

considered identification problem is identification of all or
part of the network dynamics (G,R,H,Λ) on the basis of
measured variables w and r.

Remark 1: The dynamic network formulation above is
related to what has been called the Dynamic Structure
Function (DSF) as considered for disturbance-free systems
in [10], [3], [11].

In order to arrive at a definition of network identifiability
we need to specify a network model and network model set.

Definition 1 (network model): A network model of a net-
work with L nodes, and K external excitation signals, with
a noise process of rank p≤ L is defined by the quadruple:

M = (G,R,H,Λ), with

• G ∈ RL×L(z), proper, stable1 and diagonal entries 0;
• R ∈ RL×K(z), proper;
• H ∈ RL×p(z), stable, with a stable left inverse, and the

top p× p block monic.
• Λ ∈ Rp×p, Λ > 0;
• the network is well-posed2 [6], with (I−G)−1 proper

and stable. �
The noise model H is defined to be non-square in the case
of a rank-reduced noise (p < L).

Definition 2 (network model set): A network model set
for a network of L nodes, K external excitation signals,
and a noise process of rank p ≤ L, is defined as a set of
parametrized matrix-valued functions:

M :=
{

M(θ) =
(
G(q,θ),R(q,θ),H(q,θ),Λ(θ)

)
,θ ∈Θ

}
,

with all models M(θ) satisfying the properties as listed in
Definition 1. �

There is a path in the network through nodes wn1 , . . . ,wnk
if Gn1n2Gn2n3 · · ·Gn(k−1)nk 6= 0.

B. Identifiability
Identification is usually performed on the basis of second-

order properties of w and r, e.g. power spectral density
functions. Therefore in [7] network identifiability has been
defined on the basis of those second-order properties.

Definition 3 (Global network identifiability [7]): The
network model set M is globally network identifiable at
M0 := M(θ0) if for all models M(θ1) ∈M,

Twr(q,θ1) = Twr(q,θ0)
Φv̄(ω,θ1) = Φv̄(ω,θ0)

}
⇒M(θ1) = M(θ0), (5)

1The assumption of having all modules stable is made in order to
guarantee that Twe (4) is a stable spectral factor of the noise process that
affects the node variables.

2This implies that all principal minors of (I−G(∞))−1 are nonzero.

where Φv̄ is the spectrum of v̄(t) := Twe(q)e(t).M is globally
network identifiable if (5) holds for all M0 ∈M. �
Under some conditions on feedthrough in modules, the
implication can be re-written.

Proposition 1 (from [7]): Let M be a network model set
that satisfies either
• all modules in G(q,θ) are strictly proper, or
• there are no algebraic loops3 and Λ(θ) is diagonal for

all θ ∈Θ.
Then M is globally network identifiable at M0 := M(θ0) if
for all models M(θ1) ∈M,

{T (q,θ1) = T (q,θ0)}⇒ (6)
{(G(θ1),R(θ1),H(θ1)) = (G(θ0),R(θ0),H(θ0))}.

Network model setM is globally network identifiable if (6)
holds for all M0 ∈M. �
Depending on the presence of external excitations, networks
with algebraic loops can also be identifiable when (6) holds;
see [7] for more details on the treatment of that situation.

In order to formulate necessary and sufficient conditions
we introduce some notation considering row j. Denote with
subscript j? row j of a matrix. The number of parameterized
transfer functions in G j?(θ) and U j?(θ) are α j and β j
respectively. Let Pj be the permutation matrix that gathers all
parameterized modules in the left part of G j?(θ)Pj, and let
Q j be the permutation matrix that gathers all parameterized
transfer functions in the right part of U j?(θ)Q j. Define
transfer function matrix Ťj as

Ťj(q,θ) :=
[
Iα j 0

]
P−1

j T (q,θ)Q j

[
IK+p−β j

0

]
, (7)

which is the transfer function matrix from signals r and e that
are input to non-parameterized transfer functions in U j?(θ),
to node signals w that are input to parameterized modules in
G j?(θ).

Theorem 1 (Part of Theorem 2 from [7]): Let M satisfy
the properties of Proposition 1, and additionally satisfy:

a. Every parametrized transfer function in the model
{M(z,θ),θ ∈ Θ} covers the set of all proper rational
transfer functions;

b. All parametrized transfer functions in the model M(z,θ)
are parametrized independently (i.e. there are no com-
mon parameters).

Then
1) M is globally network identifiable at M(θ0) if and

only if
i) each row j of the transfer function matrix[

G(θ) U(θ)
]

has at most K + p parameterized
entries, and

ii) for each j, Ťj(θ0) defined by (7) has full row rank.
2) M is globally network identifiable if and only if i)

holds, and ii) holds for all Ťj(θ),θ ∈Θ. �

3an algebraic loop is a path where n1 = nk and
limz→∞ Gn1n2 (z)Gn2n3 (z) · · ·Gn(k−1)nk (z) 6= 0



III. EXTENSION TO SINGLE-MODULE IDENTIFIABILITY

In this section first we formalize identifiability of a row
of M, which considers all modules that map into a partic-
ular node signal, after which identifiability of a particular
module is treated. To this end we formalize identifiability of
particular properties of M as suggested in [7].

Definition 4: For network models that satisfy the condi-
tions of Proposition 1, row j of network model set M is
globally network identifiable at M0 :=M(θ0) if for all models
M(θ1) ∈M,

T (q,θ1) = T (q,θ0)}⇒

 G j?(q,θ1) = G j?(q,θ0)
R j?(q,θ1) = R j?(q,θ0)
H j?(q,θ1) = H j?(q,θ0)

. (8)

Row j of network model set M is globally network identi-
fiable if (8) holds for all M0 ∈M. �

The conditions in Theorem 1 are formulated independently
for each row, so it is straightforward to obtain conditions
under which a specific row of M is identifiable.

Corollary 1: LetM be a network model set defined as in
Theorem 1, and Ťj(θ) defined by (7), then

1) Row j of network model set M is globally network
identifiable at M(θ0) if and only if

i) row j of transfer function matrix
[
G(θ) U(θ)

]
has at most K + p parameterized entries, and

ii) Ťj(θ0) has full row rank.
2) Row j of network model set M is globally network

identifiable if and only if i) holds and and ii) holds for
all Ťj(θ), θ ∈Θ �

When we are interested in one specific module, then the
above definition is conservative. It is possible that a module
is identifiable, even when other modules of that row are not,
which is illustrated by the following example.

w1 w4

e1

G41

w2
e2

G42

w3

G43

G32

Fig. 1. Example network model where some modules are identifiable.

Example 1: Consider a set of network models of the
topology shown in Figure 1, described by

w1
w2
w3
w4

=


0 0 0 0
0 0 0 0
0 G32 0 0

G41 G42 G43 0




w1
w2
w3
w4

+


1 0
0 1
0 0
0 0

[e1
e2

]
, (9)

where all modules G ji are parameterized. The response of
the node variables is given by w = Te with

T = (I−G)−1H =


1 0
0 1
0 G32

G41 G42 +G32G43

 . (10)

From T module G41 can directly be determined, but the other
modules G42 and G43 on row 4 can not. This is because node
4 has three modules, and there are only two excitations. �

Identifiability of a specific module is defined next.
Definition 5: For network models that satisfy the condi-

tions of Proposition 1, module G ji of network model set M
is globally network identifiable at M0 := M(θ0) if for all
models M(θ1) ∈M,

{T (q,θ1) = T (q,θ0)}⇒ {G ji(q,θ1) = G ji(q,θ0)}. (11)

Module G ji of network model set M is globally network
identifiable if (11) holds for all M0 ∈M. �
It is obvious that identifiability of every module holds for
every model set that is globally network identifiable. How-
ever the interesting question is whether the conditions can be
relaxed, such that identifiability of a module is guaranteed,
even when other modules are not identifiable.

In order to find identifiability conditions for a single
module G ji, assume without loss of generality that this
module corresponds to the top row of Ťj. Then define Ťj,(i,?)
as the top row of Ťj, and Ťj,(−i,?) by

Ťj(q,θ) =
[

Ťj,(i,?)(q,θ)
Ťj,(−i,?)(q,θ)

]
(12)

So Ťj,(−i,?) is Ťj with the row corresponding to node wi
removed. The following Theorem now specifies necessary
and sufficient conditions for the identifiability condition (11).

Theorem 2: Let M be a network model set defined as in
Theorem 1, then

1) Module G ji of network model set M is globally
network identifiable at M(θ0) if and only if

rank(Ťj(θ0))> rank(Ťj,(−i,?)(θ0)). (13)

2) Module G ji of network model set M is globally
network identifiable if and only if

rank(Ťj(θ))> rank(Ťj,(−i,?)(θ)) (14)

for all θ ∈Θ. �
The proof is collected in the appendix.

The essential part of the theorem is that if the row of
Ťj corresponding to node wi is a linear independent row,
then the module is identifiable. Note that there is no explicit
requirement on the number of parameterized modules. We
do not require uniqueness of all modules, so we can have
fewer equations than unknowns.

Example 2 (Example 1 continued): For node 4 there are
three parameterized transfer functions, while there are only
two external signals. To evaluate identifiability we use

Ť4 =

1 0
0 1
0 G32

 , Ť4(−1,?) =

[
0 1
0 G32

]
. (15)

In Ť4 the first row is clearly linearly independent of the other
rows, such that rank(Ť4(−1,?)) = 1 < rank(Ť4) = 2, and the
condition of Theorem 2 is satisfied for G41. It can be shown
that rows 2 and 3 of Ť4 are linearly dependent, and so G42
and G43 are both not identifiable. �



IV. PATH-BASED IDENTIFIABILITY CONDITIONS

In this section the rank conditions that appear in the
network identifiability results are formulated as topology
based conditions. The core idea is that the rank of T depends
on the topology of the network. We base our reasoning on
concepts presented in [8], [9], such as generic identifiability,
which we adapt to our problem setting. Then the rank
conditions for identifiability are adapted to this definition.
The notion of vertex disjoint paths and its relation to the
rank of the transfer matrix will be introduced, and used to
formulate topological conditions under which the network is
identifiable.

Definition 6 (Generic network identifiability):
• M is generically network identifiable if for all models

M(θ1) ∈ M the implication (6) holds for almost all
M0 ∈M.

• Row j of network model set M is generically network
identifiable if for all models M(θ1)∈M the implication
(8) holds for almost all M0 ∈M.

• Module G ji of network model set M is generically
globally network identifiable for all models M(θ1)∈M
the implication (11) holds for almost all M0 ∈M. �

The only difference between Definitions 3 and 6 is the
exception of a set of zero measure, i.e. identifiability of
almost all models is accounted for. The consequences of this
change in the definitions are discussed in Section V.

The rank conditions of Theorems 1 and 2, Corollary 1 can
directly be formulated for the generic network identifiability.

Corollary 2: The model set M, row j of model set M,
or module G ji of model set M is generically network
identifiable by the conditions 2) of Theorem 1, Corollary
1, Theorem 2 respectively upon replacing the phrase “for all
θ ∈Θ” by “for almost all θ ∈Θ”. �

The proof is a trivial extension of the proof of Theorem
1 found in [7] and the proof of Theorem 2.

In [12], the name vertex is used for a node, and the rank
of a transfer matrix is connected to the notion of a set of
vertex disjoint paths. The notion of vertex disjoint paths can
be used to formulate topological conditions under which a
model set is generically network identifiable, following the
approach in [8]. As defined in [12], two paths in a network
between external signals or nodes are vertex disjoint if they
have no common nodes, including their start and end nodes.
For a set of l paths, these paths are vertex disjoint if every
pair of paths is vertex disjoint.

The essential meaning is the following: If there exists a
set of vertex disjoint paths from some excitations rk, el to
some nodes wi, then every one of those nodes has ’its own’
source of excitation. Note that when two paths are vertex
disjoint, there may still exist modules that connect the nodes
in the paths, and there may exist loops around the nodes.

The connection to rank of a transfer matrix is on the basis
of state-space systems in the following way. A parameterized
state-space system is defined with matrices A,B,C, and the
open-loop transfer from input to output is defined as Tss :=
C(sI−A)−1B. Then the generic rank of the transfer matrix

Tss is defined as the rank of Tss for almost all parameters.
This is formalized in the following theorem.

Theorem 3 (Theorem 2 from [12]): Let GΣ be the graph
corresponding to the state-space system

ẋ = Ax+Bu, y =Cx. (16)

The maximum number of vertex disjoint paths in GΣ from
signals in u to signals in y equals the generic rank of Tss.�
This result will be used for a dynamic network (2) by
formulating it as a state-space system which has coupled
topological properties.

Proposition 2: LetM be a set of network models M with
strictly proper modules in G. Let U be a set of external
signals, i.e. a set of some rk and el , and let Y be a set of
nodes wi. The maximum number of vertex disjoint paths in
M from signals in U to nodes in Y is equal to the generic
rank of the transfer TYU (q,θ) from signals in U to nodes in
Y . �
The proof is collected in the appendix.

The rank conditions on Ťj of Corollary 2 can now be
formulated in terms of vertex disjoint paths. The generic
row rank of Ťj can be checked by checking whether there
are a sufficient number of vertex disjoint paths from selected
external signals to node signals.

Proposition 3: LetM be a set of network models M with
strictly proper modules in G. Let Y j be the set of nodes wk
which are an input to a parameterized G jk(θ), and let α j be
the cardinality of Y j. Let U j be the set of external signals
rk, el that are an input to non-parameterized R jk, H jl .

1) The model setM is generically network identifiable if
and only if i) of Theorem 1 holds and for each j, there
is a set of α j vertex disjoint paths from excitations in
U j to nodes in Y j.

2) Row j of model set M is generically network identi-
fiable if and only if i) of Corollary 1 holds and there
is a set of α j vertex disjoint paths from excitations in
U j to nodes in Y j.

3) For module G ji, let Ȳ j =Y j \wi. Module G ji of model
set M is generically network identifiable if and only
if there exists a set P of the maximum number of
vertex disjoint paths from signals in U j to nodes in
Ȳ j, and there is an additional path from signals in U j
to wi, such that this path and the paths in P are vertex
disjoint. �

Proof: By combining Corollary 2 with Proposition 2. In
order to satisfy condition 1) or 2) there is an implicit re-
quirement on the number of available external signals, which
is directly related to the maximum number of parameterized
elements in conditions 1) and 2) of Corollary 2. For condition
3) there is no minimum number of external signals, but there
is the implicit requirement that there is a ’surplus’ excitation
that can form a vertex disjoint path to the module of interest.

In order to check the conditions of Proposition 3, all
that must be done is check which transfer functions are
parameterized, and check whether the necessary paths are
present in the network. This is illustrated in an example.



Example 3 (Example 2 continued): Topology based con-
ditions for identifiability are checked for various modules
in the network in Figure 1. When checking identifiability
of modules that map into node w4 we see that Y4 =
{w1,w2,w3}, so α4 = 3. There are only 2 excitations, which
can never form 3 vertex disjoint paths, so the row is not
generically network identifiable.

For identifiability of module G42 there are two vertex
disjoint paths from external signals to the other inputs w1, w3,
and there is no surplus excitation available for w2. However
for identifiability of module G41 there is just one vertex
disjoint path from external signals to the other inputs w2,
w3, and there is the surplus excitation available for w1, so
G41 is generically network identifiable. �

V. DISCUSSION ON DEFINITION OF IDENTIFIABILITY

Two definitions of network identifiability have been intro-
duced. It is discussed what the difference in definition means
in practice.

Path-based conditions are based on generic rank, and not
’standard’ rank. The difference between the two definitions
of identifiability is the exclusion of a zero-measure set of
models, so network identifiability is stricter than generic
network identifiability. When one model in M is not iden-
tifiable, then M is not network identifiable, but it can be
generically network identifiable. Next an example is given
of a single non-identifiable model in the model set, which is
in particular relevant in case the objective is to identify the
network topology.

Example 4: Suppose we have a parameterized set of mod-
els as depicted in Figure 2, with

G =

[
0 G12

G21 0

]
, H =

[
1
0

]
, T 0 =

 1
1−G0

12G0
21

G0
21

1−G0
12G0

21

 .
Identifiability of G12 and G21 is determined from the rank
of Ť1 = G21

1−G12G21
and Ť2 = 1

1−G12G21
respectively. For all

θ where G21(θ) = 0 the Ť1 loses rank and G12 is not
identifiable. �

In a situation where the topology is known, i.e. it is
known that G21 6= 0, then we want to classify the model
set as identifiable, which can be done with generic network
identifiability. However when the topology is not known a-
priori, we would like to determine whether G12 and G21 are
zero or non-zero. Then the possibility that G0

21 = 0 must
be taken into account such that the generic network iden-
tifiability concept is less attractive, and the global network
identifiability concept is more powerful.

w2 w1G12

G21

v1

Fig. 2. A closed-loop network representing a set of models.

VI. CONCLUSIONS

The notion of network identifiability has been extended to
cover the case of single-module identifiability. Necessary and
sufficient conditions for single module identifiability have
been obtained, and it has been shown that when considering
the concept of generic identifiability, the necessary and
sufficient conditions can be reformulated in terms of path-
based conditions that can simply be verified on the basis of
the network topology.

APPENDIX

A. Proof of Theorem 2

The left hand side of the implication (11) is written as

(I−G(θ))T =U(θ), (17)

where we use shorthand notation T = T (θ0), G(θ) = G(θ1)
and U(θ) =U(θ1). By inserting the permutation matrices P
and Q into row j of (17) similar to (7) we obtain

(I−G(θ)) j?PP−1T Q =U j?(θ)Q. (18)

Let
[
(I−G(θ))

(1)
j? (I−G)

(2)
j?

]
= (I −G(θ)) j?P be the partitions

containing parameterized and non-parameterized modules
after permutation, and similarly let

[
U(1)

j? U(θ)
(2)
j?

]
=U(θ) j?Q

be the partitions of non-parameterized and parameterized
modules, then

(I−G(θ))
(1)
j? T (1)

j +(I−G)
(2)
j? T (2)

j =
[
U (1)

j? U(θ)
(2)
j?

]
, (19)

with P−1T Q =

[
T (1)

j

T (2)
j

]
. Note that Ťj = T (1)

j

[
IK+p−β

0

]
. The

right-hand block in (19) corresponding to U(θ)
(2)
j? does not

add to the uniqueness of the module of interest since it is
fully parameterized (conditions a,b of Theorem 1). Let ρ be
the left 1× (K + p−β ) block of (I−G)

(2)
j? T (2)

j , which does
not contain parameters, so equivalently we can consider

(I−G(θ))
(1)
j? T̆j +ρ =U (1)

j? . (20)

Now since ρ and U (1)
j? are independent of θ we have that

(I−G(θ))
(1)
ji is uniquely specified if and only if (I−G(θ))

(1)
ji

is uniquely specified in the left-nullspace of Ťj.
Sufficiency: Define some transfer matrix X(q) of dimen-

sion (K + p−β )×1 with the following properties:
• Ťj(−i,?)(q,θ0)X(q) = 0, and
• Ťj(i,?)(q,θ0)X(q) 6= 0,

where Ťj(−i,?) and Ťj(i,?) are defined in (12). This X exists
because condition (13) requires that Ťj(−i,?)(q,θ0) is not full
column rank, and condition (13) implies that Ťj(i,?)(q,θ0) is
linearly independent from the rows of Ťj(−i,?)(q,θ0). Now
define an (K+p−β )×(K+p−β ) full rank transfer matrix Z
which has X as its first column. Then (20) is post-multiplied
with Z to obtain an equivalent set of equations, leaving the
set of solutions for G ji invariant. The first column of ŤjZ is

Ťj(q,θ0)X(q) =
[

Ťj(i,?)(q,θ0)X(q)
0

]
, (21)



such that, for this choice of Z, G ji can be uniquely deter-
mined from

(I−G(θ))
(1)
j?

[
Ťj(i,?)X

0

]
= (U (1)

j? −ρ)X . (22)

If G ji is unique for this particular choice of Z, it must be
unique in the original problem also.

Necessity: The converse of condition (13) is that
rank

(
Ťj(q,θ0)

)
= rank

(
Ťj(−i,?)(q,θ0)

)
. In this case the row

of Ťj(q,θ0) corresponding to G ji(θ) is linearly dependent on
other rows of Ťj(q,θ0). When Ťj(i,?) is linearly dependent
on another row Ťj(k,?), an equation equivalent to (20) can be
created where the element G j1 and row Ťj(i,?) are deleted,
and where (G jiF +G jk) replaces G jk, such that G ji can not
uniquely be distinguished.

Proof of situation (2): For all θ ∈ Θ: For every θ ∈ Θ

we can construct T (θ) with related Ťj(θ). If condition (13)
applies for every model as stated by condition (14), then the
reasoning as presented before fully applies to every model.
If for some θ ∈Θ the condition (13) is not met, there exists
a model in the model set which is not identifiable, and hence
the model set is not globally network identifiable in M. �

B. Proof of Proposition 2

A state-space system is defined with paths related to
paths in M, such that the vertex disjoint paths of Theorem
3 also appear in M. Theorem 3 is not suitable for state-
space systems with D matrix. In situations where U contains
direct terms, i.e. limz→∞ U(z) 6= 0, we add 1 delay to U . The
network then is q−1w(t) = (I−G)−1(q−1U)u(t), which has
the same topology, and the rank of T is unaffected.

The associated state-space system is defined for each
node j = 1, . . . ,L. Define a state-space system in observable
canonical form with the state vector x j and the state equation

x+j = A jx j +
L

∑
i=1

Bw
jiwi +

K

∑
k=1

Bu
jkuk, w j =C jx j, (23)

where A j and C j have the structure

A j =


∗ 1 0 · · ·
∗ 0 1 0
... 0 0

. . .
∗ 0 0 0

 , C j =
[
1 0 · · · 0

]
,

via the relations G j? = C j(zI − A j)
−1Bw

j? and q−1U j? =

C j(zI −A j)
−1Bu

j?. Note that Bw
jl = 0 if wl is not an input

to w j. The full network can be written in state-space form
by interconnecting all individual systems(23), i.e.

x+ = Ax+Buu, w =Cx, with (24)

x =

x1
...

xL

 , Bu =

Bu
11 Bu

12 · · ·
Bu

21 Bu
22 · · ·

...
...

. . .

 , Bw =

Bw
11 Bw

12 · · ·
Bw

21 Bw
22 · · ·

...
...

. . .

 ,
C = diag({C j} j=1···L), A = diag({A j} j=1···L)+BwC.

Associate the graph GM with nodes w,u based on the
topology of M, and associate graph GΣ with nodes x,w,r
based on the topology of (24). Denote x j{i} the i-th element

of x j. As a consequence of the chosen canonical state-space
structure we can make the following claim.

Claim 1: In GM wi is an in-neighbor of w j if and only if
in GΣ there is a path xin,x j,{s},x j,{s−1}, · · ·x j,{1} for some s.
The claim holds since wi being the in-neighbor of w j implies
G ji 6= 0, which implies Bw

ji 6= 0, such that the ji block of A
denoted with A{ ji} = Bw

jiCi has a non-zero first column, such
that there is a path xin,x j,{s},x j,{s−1}, · · ·x j,{1} for some s. The
implications act also in the other direction. A similar claim
can be made when ui is an in-neighbor of w j by replacing
xi{n} with ui. The interpretation is that the path wi,w j in GM
from wi or ui to its out-neighbor w j in GΣ becomes a path
only through states in x j. This has the following consequence
for paths from u to w.

Claim 2: Path ui,wk1 , · · · ,wkn ,w j exists in GM if and only
if path ui,xk1{1}, · · · ,xkn{1},x j{1},w j exists4 in GΣ, for any
sequence k1, · · · ,kn. The interpretation of the claim is that
the additional states/nodes in GΣ do not change the vertex
joint/disjoint properties of paths between the nodes that are
also in GM . Two paths from u to w in GM are vertex disjoint if
and only if the corresponding paths in GΣ are vertex disjoint.

Transfer TYU =CY(zI−A)−1BU where CY and BU are C
and B with appropriate rows and columns removed. Then by
Theorem 3 and Claim 2, the generic rank of TYU equals the
maximum number of vertex disjoint paths U to Y in GM . �
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J. Grose, J. Prince, G.-B. Stan, and S. Warnick, “Dynamical structure
function identifiability conditions enabling signal structure reconstruc-
tion,” in Decision and Control (CDC), 2012 IEEE 51st Annual Conf.
on. IEEE, 2012, pp. 4635–4641.

[11] Y. Yuan, “Decentralised network prediction and reconstruction algo-
rithms,” PhD dissertation, University of Cambridge, 2012.

[12] J. van der Woude, “A graph-theoreric characterization for the rank of
the transfer matrix of a structured system,” Mathematics of Control,
Signals, and Systems, vol. 4, pp. 33–40, 1991.

4Technically the xk{1} is to be replaced with xk{s}, · · · ,xk{1} for some s




