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Allocation of Excitation Signals for Generic
Identifiability of Linear Dynamic Networks

Xiaodong Cheng , Member, IEEE, Shengling Shi , Student Member, IEEE,
and Paul M. J. Van den Hof , Fellow, IEEE

Abstract—A recent research direction in data-driven
modeling is the identification of dynamic networks, in
which measured vertex signals are interconnected by dy-
namic edges represented by causal linear transfer func-
tions. The major question addressed in this article is where
to allocate external excitation signals such that a network
model set becomes generically identifiable when measur-
ing all vertex signals. To tackle this synthesis problem, a
novel graph structure, referred to as directed pseudotree,
is introduced, and the generic identifiability of a network
model set can be featured by a set of disjoint directed
pseudotrees that cover all the parameterized edges of an
extended graph, which includes the correlation structure of
the process noises. Thereby, an algorithmic procedure is
devised, aiming to decompose the extended graph into a
minimal number of disjoint pseudotrees, whose roots then
provide the appropriate locations for excitation signals.
Furthermore, the proposed approach can be adapted us-
ing the notion of antipseudotrees to solve a dual problem,
which is to select a minimal number of measurement sig-
nals for generic identifiability of the overall network, under
the assumption that all the vertices are excited.

Index Terms—Graph theory, networked control systems,
system identification.

I. INTRODUCTION

DYNAMIC networks adequately describe a wide class of
complex engineering systems appearing in various ap-

plications, including multirobot coordination, power grids, and
biochemical networks, see [1] for an overview. The conven-
tional system identification methods mainly focus on systems
with relatively simple dynamical structures, e.g., single-input
single-output, multiple-input multiple-output, and open-loop or
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closed-loop systems [2]. As control and design optimization
for structured systems are resolved increasingly in a decentral-
ized or distributed fashion, challenges arise in developing new
data-driven modeling frameworks that address interconnection
structures in network systems.

The interconnection structure of dynamic networks can not
only capture the collective behavior of interacting dynamical
subsystems but can also be used to represent causal dependencies
among manifest signals [3]. Thereby, different representations
of dynamic networks are considered. The first one focuses on
interconnections of subsystems, see, e.g., [4]–[8] and the refer-
ences therein. The second way is to consider signal structures.
Specifically, the vertices in a network are interpreted as mea-
sured internal signals, and the directed edges represent transfer
operators, referred to as modules. Taking into account external
noises and excitation signals, the identification of the modules
in a network becomes a generalization of a closed-loop system
identification problem [9].

With the latter description of dynamic networks, three re-
search topics have been addressed. The first is to detect the
topology of a network using measured internal signals, see,
e.g., [10]–[16], where techniques, such as Wiener filters, com-
pressed sensing, or Bayesian approaches, are taken to recon-
struct the link structure among the process signals and obtain
some sparse estimates.

The second problem is to estimate a desired local module
within a network. Various methods based on the prediction
error method can be found in, e.g., [17]–[25], which focus on
the selection of predictor inputs: which signals are required to
be measured such that we are able to consistently identify the
dynamics of a particular module in the network?

Relevant to the aforementioned question, the third problem,
which is of particular interest in this article, concerns the struc-
tural identifiability of a full dynamic network. Based on the
results for deterministic network reconstruction problems in [26]
and [27], the concept of global network identifiability was intro-
duced in an identification setting in [28] and [29], as a property
that reflects the ability to distinguish between network models
in a parameterized model set on the basis of measurement data.

In the literature, there are two classes of network identifia-
bility, namely, global identifiability [28]–[30], which requires
models to be distinguishable from all other models in the model
set,1 and generic identifiability [31]–[33], which means that
models can be distinguished from almost all models in the model

1There are actually two versions of global identifiability, reflecting whether
either one particular model in the set can be distinguished or all models in the
set [29].
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set. Furthermore, the conditions for network identifiability have
been analyzed within different settings. In, e.g., [30]–[32], all
vertices are excited by external excitation signals while only
a subset of vertices is measured. In contrast, the analysis in,
e.g., [29], [33], assumes that all vertices are measured, whereas
only a subset of vertices is excited. A recent contribution [34]
also addresses the combined situation.

In all these settings, network identifiability is dependent on
several structural properties of the model set, including the
network topology, the modeled correlation structure of process
noises, the presence and location of external excitation signals,
and the choices of measured vertex signals. Based on these
properties, the existing results have provided both algebraic
and graph-based analysis for network identifiability, which are
typically formulated for each node separately and require a
separate check of each and every node. However, none of them
has referred to the synthesis problem that is: where to allocate
a limited number of excitation or measurement signals so as to
achieve network identifiability for the full network. Actually,
such a problem has more realistic significance in the identifi-
cation of dynamic networks, since it actually determines the
cost of identification experiments in networks. This becomes
the motivation of the current study. We mainly focus on the
situation that all the internal signals are measured, and we aim
for a systematic scheme that allocates the minimum number of
excitation signals to achieve generic identifiability. To the best of
our knowledge, such a synthesis problem has not been addressed
in the literature so far.

In this article, the main objective is to present a novel graph-
theoretic approach to both the analysis and synthesis of dynamic
networks. Although Hendrickx et al [32] and Weerts et al[33]
have provided attractive path-based conditions for checking
the generic identifiability, the validation has to be carried out
for each vertex, limiting the potential of these conditions for
the use in the synthesis problem, particularly when large-scale
or complex-structured networks are considered. In contrast to
the path-based conditions, this article introduces a novel graph
structure, called directed pseudotrees, and provides a different
condition for guaranteeing generic identifiability of a full net-
work using the concept of disjoint pseudotree covering. More
specifically, we define an extended graph, which integrates
the interconnection structure of the original network and the
correlation structure of process noises. Then, the identifiability
is characterized by a set of (edge) disjoint directed pseudotrees
that cover all the parameterized edges of the extended graph
while each of the pseudotrees has a single external excitation.

Based on this characterization, we find that the minimal
number of excitation signals required for the identifiability is
upper-bounded by the cardinality of the covering. Thereby,
an effective heuristic algorithm is designed to decompose the
extended graph into a minimal number of disjoint pseudotrees,
whose roots, in fact, provide potential locations for excitation
signals. The main ingredient of this algorithm is the concept of
characteristic matrix, which features all the pairs of mergeable
pseudotrees in a covering. The graph merging steps are then
completely carried out by using specific algebraic operations on
the characteristic matrix. As a crucial follow-up step, we further
check the necessity of stimulating one root of each pseudotree
in the resulting covering. If it does not change the generic
identifiability of the full network by excluding a pseudotree

to have an excitation, we then reduce the required number of
excitation signals. The current article significantly improves the
preliminary results in [35], where the identifiability condition is
only sufficient. Moreover, this article considers a more general
model setting, which allows for correlated noises and possible
a priori known nonparameterized modules.

The rest of this article is organized as follows. In Section II,
we recapitulate some basic terminologies and notations in graph
theory and provide the linear dynamic network model used in
this article. The definition of network identifiability is given in
Section II-C, and Section IV then defines a new graph struc-
ture, referred to as pseudotrees, and relevant concepts, includ-
ing disjoint pseudotrees and edge covering, are introduced. In
Section V, we present a generic identifiability condition based
on disjoint pseudotrees and then propose a pseudotree merging
approach for the allocation of excitation signals in Section VI.
Finally, concluding remarks are made in Section VII.

Notation: Denote R as the set of real numbers, and R(z) is
the rational function field over R with variable z. vi denotes the
ith element of a vector v, and Aij denotes the (i, j)th entry of a
matrix A. The cardinality of a set V is given by |V|. Let G be a
directed graph, and we denote V (G) and E(G) as the vertex set
and edge set of G, respectively. The union of two graphs G1 and
G2 is denoted by G := G1 ∪ G2, where V (G) = V (G1) ∪ V (G2)
and E(G) = E(G1) ∪ E(G2).

II. PRELIMINARIES AND PROBLEM SETTING

A. Graph Theory

We provide necessary terminologies and concepts from graph
theory and refer to Mesbahi and Egerstedt [1] and Godsil and
Royle [36] for more details. The topology of a dynamic net-
work is characterized by a graph G that consists of a finite
and nonempty vertex set V := {1, 2, . . ., L} and an edge set
E ⊆ V × V . A directed graph is such that each element in E
is an ordered pair of elements of V . If (i, j) ∈ E , we say that the
edge is incident from vertex i to vertex j, and the vertex i is the
in-neighbor of j, and j is the out-neighbor of i. LetN−j andN+

j
be the sets that collect all the in-neighbors and out-neighbors of
vertex j, respectively.

A graph G is called simple, if G does not contain self-loops
(i.e., E does not contain any edge of the form (i, i) ∀ i ∈ V),
and there exists only one directed edge from one vertex to
each of its out-neighbors. In a simple graph, a directed path
connecting vertices i0 and in is a sequence of edges of the
form (ik−1, ik), k = 1, . . ., n, and every vertex appears at most
once on the path. Two directed paths are vertex-disjoint if they
do not share any common vertex, including the start and the
end vertices. In a simple directed graph G, we denote bU→Y as
the maximum number of mutually vertex-disjoint paths from
U ⊆ V to Y ⊆ V . A directed simple graph G is connected if
the underlying undirected graph Gu obtained by replacing all
directed edges of G with undirected edges is connected, i.e., in
Gu, there is an undirected path between any pair of vertices.

In a simple connected graph G, a source is a vertex with-
out any in-neighbors, and likewise, a sink is a vertex with-
out any out-neighbors. The sources and sinks of G are col-
lected by Sou(G) := {j ∈ V (G) | |N−j | = 0} and Sin(G) :=
{j ∈ V (G) | |N+

j | = 0}, respectively.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 07,2022 at 10:33:39 UTC from IEEE Xplore.  Restrictions apply. 
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B. Dynamic Network Model

Consider a dynamic network whose topology is captured
by a simple directed graph G = (V, E) with vertex set V =
{1, 2, . . ., L} and edge set E ⊆ V × V . Following the basic setup
of Van den Hof et al [9] and Weerts et al [29], the dynamics of
the jth vertex inG is described by an internal variablewj(t) ∈ R
as

wj(t) =
∑
l∈N−j

Gjl(q)wl(t) +
K∑

k=1

Rjk(q)rk(t) + vj(t) (1)

where q−1 is the delay operator, i.e., q−1wj(t) = wj(t− 1).
Gjl(q) ∈ R(q) is referred to as a module of the network, and
Gjl(q) is nonzero only if the edge (l, j) ∈ E . Note that Gjj = 0,
for all j ∈ V , due to the simpleness of G. The signals rk(t) ∈ R,
with k = 1, 2, . . .,K, are the external excitations that can di-
rectly be manipulated by users. DenoteR ⊆ V , with |R| = K,
as the set of vertices that are affected by the external excita-
tion signals, thereby Rjk(q) ∈ R(q) is nonzero if the vertex
j ∈ R is excited by rk(t), andRjk(q) = 0 otherwise. Moreover,
vj(t) ∈ R is the unmeasured disturbance injected into the jth
node.

A compact form for expressing the dynamics of the network
is obtained as

w(t) = G(q)w(t) +R(q)r(t) + v(t) (2)

where G(q) and R(q) are the transfer matrices that collect
Gjl(q) and Rjk(q) in (1) as their corresponding entries,
respectively. w(t) := [w1(t) w2(t) . . . wL(t)]

�, r(t) := [r1(t)
r2(t) . . . rK(t)]�, and v(t) := [v1(t) v2(t) . . . vL(t)]

�. For the
identifiability analysis in this article, the signals w(t) and r(t)
are assumed to be known.

Assumption 1: Throughout this article, we consider a dy-
namic network (2) with the following properties.

1) The network (2) is well-posed and stable, i.e., (I −
G(q))−1 is proper and stable.

2) All the entries of G(q) and R(q) are proper and stable
transfer operators, and each row of R(q) contains only
one nonzero entry, i.e., each vertex inR is influenced by
a single excitation signal.

3) v(t) is modeled as a stationary stochastic process with a
rational spectral density

v(t) = H(q)e(t) (3)

where e(t) :=
[
e1(t) e2(t) . . . ep(t)

]�
is a white

noise process, with dimension p ≤ L and the covariance
matrixΛ > 0. In the case of p = L,H(q) is a proper ratio-
nal transfer matrix, which is monic, stable, and minimum-
phase. For the situation p < L, i.e., rank-reduced noises,
H(q) is structured as H(q) = [Ha

Hb
], with Ha square,

proper, monic, stable, and minimum phase, see [29] for
more details. �

The aforementioned are standard assumptions made for dy-
namic networks to ensure the properness and stability of the
mapping from r(t) to w(t) and of the noise model, which are
essential for the identifiability analysis, see [29], [33] for more
details.

C. Generic Identifiability

In order to define network identifiability, a network model and
a network model set are specified. Consider a dynamic network
as in (2) of L internal signals, K external excitation signals, and
a noise process of rank p ≤ L. Following Weerts et al [29], a
network model is defined by the quadruple

M = (G,R,H,Λ) (4)

where G ∈ R(z)L×L, R ∈ R(z)L×K , and H ∈ R(z)L×p

are proper transfer matrices satisfying the properties in
Assumption 1, and Λ ∈ Rp×p is the positive definite noise
covariance matrix. We then denote a set of parameterized matrix-
valued functions

M := {M(q, θ) = (G(q, θ), R(q), H(q, θ),Λ(θ)), θ ∈ Θ}
(5)

as the network model set with all network models M(θ) de-
scribed in (4). The network model set M represents prior
knowledge of the dynamic network, including the topology, non-
parameterized modules, presence, disturbance correlation, and
locations of external signals. All the entries of R(q) are known
and, thus, nonparameterized. Note that the variable θ ∈ Θ in
(5) is only used for formalizing a set of models, whereas the
properties of the mapping from θ to network models will not be
addressed.

Denote the transfer matrix

T (q, θ) =
[
Twr(q, θ) Twe(q, θ)

]
(6)

where Twr(q, θ) := (I −G(q, θ))−1R and Twe(q, θ) := (I −
G(q, θ))−1H(q, θ), and we denote the signal ṽ(t, θ) as
the disturbance signal with power spectrum Φv̄(ω, θ) =
Twe(e

iω, θ)Λ(θ)Twe(e
iω, θ)−�. In our identification setting,

w(t) and r(t) are the measurement data, from which we can
uniquely identify the transfer matrixTwr and the power spectrum
Φv̄ , provided that we have sufficiently excitating signals r. Then,
the concept of identifiability specifies whether there is a unique
representation of a network model in the model set M that
matches the objectsTwr andΦṽ . In the next definition, we extend
the formulation of global network identifiability as introduced
in [29] with the principle of genericity that was introduced in [31]
and [32] for generic identifiability, but applied to a slightly
different notion of identifiability.

Definition 1 (Network Identifiability): Consider a network
model setM, and a modelM(q, θ0) ∈M for which we consider
the following implication:

Twr(q, θ0) = Twr(q, θ1)

Φv̄(ω, θ0) = Φv̄(ω, θ1)

}
⇒M(q, θ1) = M(q, θ0) (7)

for all θ1 ∈ Θ. Then,M is as follows:
a) globally network identifiable from (r, w) if implication

(7) holds for all θ0 ∈ Θ;
b) generically network identifiable from (r, w) if implication

(7) holds for almost all2 θ0 ∈ Θ. �

2“Almost all” refers to the exclusion of parameters that are in a subset of
the finite set Θ with Lebesgue measure 0. When the parameter space Θ is of
infinite dimension, we consider the concept of generic properties in a topological
space [37] applied to the space of models instead, from which a more rigorous
definition of generic identifiability is introduced, see [38] for the details.
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In order to support the analysis and verification of network
identifiability, we add the following step, which further simpli-
fies the implication (7).

Lemma 1 (see [29]): If model setM satisfies the following
condition:

1) either all modules G(q, θ) are parameterized to be strictly
proper, or

2) the parameterized network model does not contain any
algebraic loops,3 andH∞(θ)Λ(θ)H∞(θ)T is diagonal for
all θ ∈ Θ, with H∞(θ) := limz→∞H(z, θ)

then implication (7) can equivalently be formulated as

T (q, θ1) = T (q, θ0)⇒
{

G(q, θ1) = G(q, θ0)
H(q, θ1) = H(q, θ0)

(8)

for all θ1 ∈ Θ.
The basic step that is made in Lemma 1 is to formulate con-

ditions under which the transfer function Twe can be uniquely
recovered from the spectrum Φv̄ , and thus, the full matrix T
in (6) can be obtained from measurement data w(t) and r(t).
Throughout this article, we will assume that the considered
model setsMwill satisfy the conditions of Lemma 1 and so that
we can use implication (8) for verifying network identifiabiltiy
according to Definition 1.

In the next step, implication (8) is reformulated in terms of a
condition on a particular matrix rank. For this step, we need the
following assumption that originates from Weerts et al. [29].

Assumption 2: Consider the following two conditions on
network model setM in (5).

1) Every parameterized entry in {G(q, θ), H(q, θ)} covers
all proper rational transfer functions.4

2) All parameterized transfer functions {G(q, θ), H(q, θ)}
are parameterized independently. �

In order to formulate the rank condition for satisfying impli-
cation (8), we denote two important sets of signals

Pj := {i ∈ N−j ⊂ V | Gji(θ) is parameterized inM}

Uj := R∪ {e� |Hj�(q) is nonparameterized inM}

and we define the transfer matrix T̆j(θ) as the transfer matrix
from Uj → Pj for models in the model setM. Now, in line with
the step made in [33], based on the introduction of genericity in
the concept of identifiability according to Bazanella et al [31]
and Hendrickx et al [32], we can formulate the following result
for generic identifiability ofM.

Proposition 1: Let model set M satisfy the conditions of
Lemma 1. If for each j = 1, . . . , L it holds that

T̆j(θ0) has full row rank for almost all θ0 ∈ Θ

then M is generically identifiable from (r, w). If M satisfies
Assumption 2, then the condition is also necessary.

This is a direct result of [29, Th. 2] and the definition of
generic identifiability in part b of Definition 1.

Based on the model setting in Section II-B, this article mainly
addresses a synthesis problem in dynamic networks to achieve

3There exists an algebraic loop around node wn1 if there exists a sequence
of integers n1, . . .nk such that G∞n1n2

G∞n2n3
. . .G∞nkn1

�= 0, with G∞n1n2
:=

limz→∞Gn1n2 (z).
4Within the constraints of the conditions of Lemma 1.

generic identifiability. Specifically, we are interested in allocat-
ing a minimal number of external excitation signals, i.e., find
the setR of minimal cardinality, such that network models in a
model set can be distinguished on the basis of the measurement
data w(t) and the presence and location of external excitation
signals r(t) and noise disturbances v(t).

III. GENERIC IDENTIFIABILITY BASED ON EXTENDED GRAPHS

In this section, we introduce the concept of extended graphs
for dynamic networks. An extended graph, which incorporates
the underlying graph of a network and its structure of noise
correlation, then leads to a path-based condition for checking
generic identifiability.

The condition in Proposition 1 reflects for every vertex in
the network, the generic (row) rank of a rational transfer matrix
between a set of external signals (measured excitation signals
and unmeasured stochastic disturbance signals) and a set of
internal vertex signals in the network. In an important theorem
of Van der Woude [39], a connection has been made between
the generic rank of a dynamic transfer matrix and path-based
conditions applied to the graph of the network. This connection
has been exploited in [31] and [32] to establish path-based
conditions for the generic rank of a dynamic transfer matrix
in the setting that all the vertices of the dynamic network are
excited by sufficiently rich external signals. Additionally, the
existing path-based conditions for generic network identifiabil-
ity require all the nonzero transfers in the network matrix G(q)
to be parameterized independently. For formulating path-based
conditions for the considered situation in this article, including
disturbance inputs and noise models, we first impose an addi-
tional assumption.

Assumption 3: In model set M, all the nonzero entries in
G(q, θ) are parameterized, and each row and column of H(q, θ)
contains either a single nonzero (parameterized or nonparame-
terized) entry or only multiple nonzero parameterized entries.

This assumption on H allows a v signal being modeled as
a white noise or multiple v signals having correlations that
are parameterized. Furthermore, we define an auxiliary notion
related to the graph of the network, in particular for the situation
of having external disturbance signals incorporated.

Definition 2 (Extended Graphs): Consider a dynamic net-
work (2) with the noise model (3). Let G be its underlying graph.
An extended graph Ĝ of the parameterized part ofM is defined
by V (Ĝ) = V (G) ∪ V̂ and E(Ĝ) = E(G) ∪ Ê, where

V̂ : = {L+ 1, L+ 2, . . ., L+ p− p0}

Ê : = {(i, j) | j ∈ V̂ , i ∈ V, Hi,j−L(q, θ) is parameterized}

with p0 the number of nonparameterized columns in H(q, θ).
Note that the extended graph Ĝ in Definition 2 only captures

the nonzero parameterized transfers in G and H . The set V̂ col-
lects additional vertices associated with the noises signals e(t),
from which there are parameterized mappings to the internal
signals of the network (2). These parameterized mappings are
then indicated by the edges in Ê. Thus, the extended graph Ĝ
integrates the structure of the original graphG and the correlation
structure of the process noises simultaneously. Denote U as
the set of stimulated vertices in Ĝ, which are excited by the
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external signalsR∪ {e1, e2, . . ., ep}, and let P̂j be the set of in-
neighbors of vertex j in the extended graph Ĝ. In the following,
we use the extended graph of the network (2) to characterize
generic identifiability.

Lemma 2: Given a network model set M that satisfies the
conditions in Lemma 1 and Assumptions 2 and 3. Then,M is
generically identifiable from (r, w) if and only if in its extended
graph Ĝ

bU→̂Pj = |P̂j | (9)

holds for all j ∈ V (G), where bU→̂Pj is the maximal number of

vertex-disjoint paths from U to P̂j .
Proof: For the situation of a dynamic network without dis-

turbance signals, it has been shown in [32, Proposition V.1]
that there is an equivalence between the generic row rank of the
matrix transfer function T̆j(θ0) and bUj→Pj in the graph that is
related to the parameterized model setM. For this equivalence,
it is required that all nonzero entries in the transfer function
matrix are parameterized independently, relating back to the
original system theoretic result of Van der Woude [39], and
that all modules are parameterized without a restriction on the
model order, as formulated in Assumption 2. In [32], this latter
condition has been formulated, in a slightly different setting,
as considering any rational transfer matrix parameterization
consistent with the directed graph. If disturbance signals are
included, we need to show that the same properties hold when
using the extended graph. With Assumption 3, the noise model
in (3) can be reformed as v(t) = Hθ(q, θ)eθ(t) +Hf (q)ef (t),
where eθ(t) ∈ Rp−p0 , ef (t) ∈ Rp0 , and all the nonzero entries
of Hθ(q, θ) are parameterized, whereas those of Hf (q) are
nonparameterized. Then, the network equation (2) can simply
be rewritten as[

w

we

]
︸ ︷︷ ︸

w′

=

[
G(q, θ) Hθ(q, θ)

0 0

]
︸ ︷︷ ︸

Gext

[
w

we

]
︸ ︷︷ ︸

w′

+

[
R(q)r +Hf (q)ef

eθ

]
︸ ︷︷ ︸

u

(10)
where we = eθ, and Gext now reflects the network matrix of
the extended network, in which all the nonzero entries are
parameterized. Full rank properties of mappings from signals in
u to signals inw′ can now be derived using path-based conditions
of the graph related to Gext, just like the results that have been
derived in [32]. This proves the condition bUj→Pj = |Pj |. Note
that in the extended graph, U\Uj is the set of e signals that have
parameterized edges incident to node j, where this set coincides
with P̂j\Pj . Thus, it is verified that bU\Uj→̂Pj\Pj = |P̂j | − |Pj |
where the corresponding vertex disjoint paths are vertex disjoint
with the vertex disjoint paths from Uj to Pj . This proves that
the condition bUj→Pj = |Pj | is equivalent to (9). �

Note that excitation signals r(t) and noises e(t) contribute
differently to the generic identifiability of the model set M,
and in the construction of extended graphs in Definition 2, we
interpret all the parameterized entries in H(q) as edges in Ê.
In this way, the notion of extended graphs Ĝ unifies the roles
of external signals r(t) and e(t) while the only difference is
that e(t) are always connected to a subset of vertex signals w(t)

Fig. 1. Illustration of the extended graph of a given dynamic network.
(a) Original dynamic network G, in which v1 and v2 are correlated
process noises. (b) Extended graph Ĝ, in where the dashed edges are
additional parameterized edges.

via parameterized edges in Ĝ. Therefore, a concise character-
ization of generic identifiability can be provided in Lemma 2
for dynamic networks with correlated noises, whose correlation
structure is captured in the corresponding extended graph as
well. The condition in Proposition 1 can now be checked using
only one equality (9), and moreover this checking is based on
the vertex-disjoint paths from a common set U of stimulated
vertices to all the in-neighbors of different vertex in Ĝ.

In the following example, we demonstrate how the extended
graph Ĝ is constructed and how it is used to check the generic
identifiability ofM.

Example 1: Consider a dynamic network shown in Fig. 1 (a),
where v1(t) and v2(t) are correlated such that

[
H(θ) R

]
=

⎡⎢⎢⎢⎣
H11(θ) H12(θ) 0 0 0
H21(θ) H22(θ) 0 0 0

0 0 H33(θ) 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎦ .

By Definition 2, the extended graph Ĝ is defined and shown in
Fig. 1(b), where V̂ = {6, 7, 8} is the set of additional vertices
added to G, and Ê = {(1, 6), (2, 6), (1, 7), (2, 7), (3, 8)} are
generated based on H(θ), indicating the edges directed from
V̂ to a subset in V .

We now make use of the extended graph in Fig. 1(b) to check
the generic identifiability of the dynamic network setM. In Ĝ,
the set of stimulated vertices is U := {4, 5, 6, 7, 8}, and the in-
neighbors of vertex 1 are collected in P̂1 = {2, 5, 6, 7}. Clearly,
there exist four vertex-disjoint paths from U to P̂1, namely, the
condition (9) holds for j = 1. We continue to verify (9) for the
other vertices j ∈ V = {1, 2, 3, 4, 5} and find that the maximal
number of vertex-disjoint paths in Ĝ from U to P̂j is always
equal to |P̂j |. Therefore, the network model setM is generically
identifiable.
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Fig. 2. Typical examples of pseudotrees, in which roots, internal ver-
tices, and leaves are labeled with different colors. Note that a pseudotree
may have multiple roots.

For the synthesis problem studied in this article, the condition
in Lemma 2 is still not convenient enough to use, as it requires to
check (9) vertex by vertex. Thus, we will introduce in Section IV
a novel graph concept, called pseudotrees, and relevant results
on disjoint pseudotree covering. Then, in Section V, a new
characterization of generic identifiability will be presented based
on disjoint pseudotrees, which further leads to an excitation
signal allocation approach for generic identifiability.

IV. DISJOINT PSEUDOTREE COVERING

We make the result of this section self-contained and indepen-
dent of the signal allocation problem of dynamic networks. In
this section, a novel graph concept, called directed pseudotree,
is introduced.

Definition 3 (Directed Pseudotrees): A connected simple
directed graph T , with |V (T )| ≥ 2, is called a (directed) pseu-
dotree if |N−i | ≤ 1, for all i ∈ V (T ).

The aforementioned concept of pseudotrees is an extension
of its definition in the undirected case, in which they are also
referred to as unicyclic graphs, see, e.g., [40], [41]. Particularly,
we exclude a singleton vertex being a pseudotree. Analogous to
directed tree graphs, the following terminologies are used.

Definition 4: In a directed pseudotree T , a vertex is called
a root, if there is exactly one directed path from this vertex to
every other vertex in T . Furthermore, a vertex is called a leaf
of T , if it has no out-neighbors in T , and a vertex is an internal
vertex of T , if it is neither a root nor a leaf. We denote Υ(T ) as
the set that collects all the roots of a pseudotree T .

In Fig. 2, typical examples of pseudotrees are presented,
in which the definitions of roots, internal vertices, and leaves
are illustrated. Note that the class of directed pseudotrees also
includes all directed rooted trees. However, different from the
standard definition of trees, a pseudotree can allow for multiple
roots, which form a directed circle with all the edges being
oriented in the same direction, and outgoing branches from any
vertex on this circle are also possible, see the right subplot in
Fig. 2. Hereafter, we will drop the word “directed” when we
refer to a directed pseudotree.

Related to the concept of vertex-disjoint paths, edge-disjoint
pseudotrees are defined as follows.

Definition 5 (Edge-Disjoint Pseudotrees): Consider two
pseudotrees T1 and T2 as subgraphs of a directed graph G. T1
and T2 are called disjoint in G if the following two conditions
hold.

Fig. 3. Illustration of disjoint pseudotrees, in which the different pseu-
dotrees are induced by the edges with distinct colors. (a) and (b) Pseu-
dotrees are not disjoint, since the out-neighbors of the gray vertices
are assigned to different pseudotrees. (c) and (d) In contrast, the pseu-
dotrees are characterized as disjoint pairs.

1) E(T1) ∩ E(T2) = ∅.
2) Ej ⊆ E(T1) or Ej ⊆ E(T2) ∀ j ∈ V (T1) ∪ V (T2),

where Ej := {(j, i) ∈ E(T1) ∪ E(T2) | i ∈ N+
j }.

The first condition means that T1 and T2 do not share any
edges, whereas the second condition means that for each vertex,
all outgoing edges in the set V (T1) ∪ V (T2) are in one and the
same pseudotree. As a special case, if both T1 and T2 are directed
rooted trees, then T1 and T2 do not share the same root or any
common internal vertex. We illustrate the concept of disjoint
pseudotrees with the following example.

Example 2: In Fig. 3 , we illustrate the conditions for disjoint
pseudotrees. In Fig. 3(a) and (b), we decompose the directed
graph into two pseudotrees, which do not share any common
edges. However, they are not disjoint. In Fig. 3(a) and (b),
the two outgoing edges of the internal vertex in the center
have been assigned to different pseudotrees, which violates the
second condition in Definition 5. In contrast, we take a different
decomposition of the two networks in Fig. 3(c) and (d), and then
the two pseudotrees obtained in (c) and (d) become disjoint.

It is worth noting that the notion of disjoint pseudotrees is
closely related to that of vertex-disjoint paths. Consider T1 and
T2 as two disjoint pseudotrees inG. For any i ∈ V (T1) ∩ V (T2),
if |N−i | ≥ 2, then there exist two in-neighbors of i located in T1
and T2 separately. Then, due to the fact that distinct pseudotrees
cannot share any common root or internal vertex, we can find
two vertex-disjoint paths in the union T1 ∪ T2 starting from two
roots in T1 and T2, respectively, to two distinct in-neighbors of
i, and each pseudotree contains exactly one path.

Next, the concept of disjoint-edge covering for a directed
graph is introduced.

Definition 6 (Disjoint-Edge Covering): Consider a directed
graph G, and let Π := {T1, T2, . . ., Tn} be a collection of con-
nected subgraphs of G. The edges in a set E ⊆ E(G) are cov-
ered by Π, if E ⊆ E(T1) ∪ E(T2) ∪ . . . ∪ E(Tn) = E , and Π is
called a covering of E . Moreover, if all the elements in Π are
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pseudotrees, which are disjoint to each other, then Π is a disjoint
pseudotree covering of E .

The concept of connectedness of the subgraphs is defined in
Section II-A. Relating to the definition of disjoint pseudotree
coverings, the following two lemmas are given.

Lemma 3: For a directed simple graph G with |V (G)| ≥ 2,
there always exists a set of disjoint pseudotrees that cover all the
edges in E(G) or any subset of E(G).

Proof: To prove this statement, we consider each vertex j ∈
V (G) \ Sin(G), with Sin(G) the set of all the sinks of G. Starting
from j, we can construct a directed star tree (a special type of
pseudotrees) with j as the single root and the vertices inN+

j as
the leaves. Then, |V (G) \ Sin(G)| pseudotrees are formed as a
covering of E(G), which are disjoint, since any two trees do not
share a common root or any common internal vertex. For any
subset of E(G), its disjoint pseudotree covering can be found
using the similar approach. �

Let us define a minimal pseudotree, which only contains one
root and all the out-neighbors of this root. By the proof of
Lemma 3, the maximal number of disjoint pseudotrees that
coexist in G is |V (G) \ Sin(G)|. Then, the following lemma
holds.

Lemma 4: Let G be a simple directed graph. If there exist k1
disjoint pseudotrees coveringE(G), withk1 < |V (G) \ Sin(G)|,
then there also exist k2 disjoint pseudotrees, for any k1 < k2 ≤
|V (G) \ Sin(G)| that cover E(G).

Proof: The maximal number of disjoint pseudotrees that co-
exist in G does not exceed |V (G) \ Sin(G)|, where Sin(G) is
the set of the sinks in G. It then requires k1 < |V (G) \ Sin(G)|,
implying that in the k1 disjoint pseudotrees, there exists at least
one pseudotree Tk that contains at least one internal vertex or
contains multiple roots. In both cases, we will show that Tk can
be decomposed into two disjoint pseudotrees.

Suppose Tk contains internal vertices. We can always find
an internal vertex i with all its out-neighbors being the leaves
of Tk. Define a directed tree Ta with i as the root and N+

i as
the leaves. Thereby, Tk is decomposed into two, a directed tree
Ta and a pseudotree Tb, where R(Tb) := Υ(Tk), V (Tb) ⊆ (Tk),
and E(Tb) := E(Tk) \ E(Ta). Note that Ta and Tb are disjoint
by Definition 5. Moreover, since Ta and Tb are subgraphs of Tk,
which is disjoint to the other trees, Ta and Tb are also disjoint
to the other pseudotrees. Next, suppose Tk does not contain any
internal vertex but multiple roots, i.e., |Υ(Tk)| ≥ 2. In this case,
we define the directed tree Ta, which is rooted at one of Υ(Tk)
and includes all the out-neighbors of this root as the leaves of Ta.
Then, similar to the previous case, we can partition Tk into two
disjoint pseudotrees, which are disjoint to the other pseudotrees
in G. Therefore, in the aforementioned cases, E can be covered
by k1 + 1 disjoint pseudotrees. The statement of this lemma
follows by iteratively applying the aforementioned reasoning
for all k2 ≥ k1 + 1. �

V. ALLOCATION OF EXCITATION SIGNALS

On the basis of disjoint pseudotree covering, we present a
novel approach for the allocation of excitation signals such that
the generic identifiability of a network model setM is achieved.
The key step relies on a partitioning of the extended graph Ĝ into
a minimal number of disjoint pseudotrees.

A. Generic Identifiability: A Pseudotree Characterization

From Section IV, we notice that there is a clear association
between vertex-disjoint paths and disjoint pseudotrees. Thus,
this section provides a novel characterization for generic identi-
fiability using the concept of disjoint pseudotrees, which is used
as the theoretical foundation for the follow-up synthesis method.

Theorem 1: Consider a network model set M defined in
(5), which satisfies the conditions of Lemma 1 and Assump-
tions 2 and 3. Let Ĝ be its extended graph with parame-
terized edges set E(Ĝ) and the set of stimulated vertices
U = {τ1, τ2, . . ., τ|U|} ⊆ V (Ĝ), where |U| = K + p. Then, the
network model set M is generically identifiable from (r, w)
if and only if there exists a disjoint pseudotree covering of
E(Ĝ), denoted by Π = {T1, T2, . . ., Tn}with n ≥ |U|, such that
τk ∈ Υ(Tk) ∀ k ∈ {1, 2, . . ., |U|}, and bU→̂Pj = |P̂j | ∀ j ∈
V (T|U|+1) ∪ . . . ∪ V (Tn). Here, Υ(Tk) is the set of roots in
the pseudotree Tk, and bU→̂Pj denotes the maximum number

of mutually vertex-disjoint paths from U to P̂j .
Proof: We first prove the “if” statement. Let Π =
{T1, T2, . . ., Tn}, withn > |U|, be a set of pseudotrees that cover
all the parameterized edges in Ĝ. Note that the disjointness of
the pseudotrees in Definition 5 implies that the paths in different
disjoint pseudotrees are vertex-disjoint, if they have no common
starting or ending nodes, and, for any vertex j ∈ V (Ĝ), all the
edges incident from the vertices in P̂j to j should belong to
distinct pseudotrees. Furthermore, any two disjoint pseudotrees
cannot share common root nodes, and thus τi �= τj , for all
i �= j. Consequently, the aforementioned properties of disjoint
pseduotrees yield that there exist |P̂j | vertex-disjoint paths from
{τ1, τ2, . . ., τn} to P̂j . Define V̄ := V (T|U|+1) ∪ · · · ∪ V (Tn)
such that all the in-coming edges of each vertex j ∈ V (Ĝ) \ V̄
belong to distinct pseudotrees, and there always exist at least |P̂j |
vertex-disjoint paths fromU to P̂j . Since each τi, which is a root
of the pseudotree Tk, k = 1, 2, . . ., |U|, is chosen as stimulated
vertex affected by an independent stimulation source, namely,
either a white noise or a designed external excitation signal, then
(9) holds for all vertex j ∈ V (Ĝ) \ V̄ . For the rest of vertices in
the set V̄ , (9) is also satisfied due to bU→̂Pj = |P̂j | ∀ j ∈ V̄ . It
then follows from Lemma 2 that the network model set M is
generically identifiable.

Next, the “only if” statement is proven. Let the network model
set M be generically identifiable, and we will show that a
disjoint pseudotree covering exists and satisfies the condition
in this theorem. It is obtained from Lemma 3 that we can
always find a disjoint pseudotree covering of E(Ĝ), denoted by
Π = {T1, T2, . . ., Tn}, with n = |V (G) \ Sin(G)|, where each
pseudotree is only composed of a node as its root and all its out-
neighbors as leaves. As the nodes in {1, 2, . . ., |U|} are excited
by external signals, we have a set of pseudotrees Πr ⊆ Π, with
|Πr| = |U|, in which every pseudotree has its root excited. Then,
we only need to prove that the path condition bU→̂Pj = |P̂j |
holds, for every node j ∈ Π \Πr. This is guaranteed by generic
identifiability ofM from Lemma 2. �

Following Theorem 1, a sufficient condition for generic iden-
tifiability can be obtained.
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Corollary 1: Consider a network model setM defined in (5),
which satisfies the conditions of Lemma 1 and Assumptions 2
and 3. Let Ĝ be its extended graph, with the set of parameterized
edgesE(Ĝ). Then, the network model setM is generically iden-
tifiable from (r, w) if there exists a set of disjoint pseudotrees
covering all the elements in E(Ĝ), and each pseudotree has at
least one root vertex being excited.

Proof: The condition in this corollary implies that the cardi-
nality of the covering n is less than or equal to |U| defined in
Theorem 1. It then follows from Lemma 4 that if E(Ĝ) can be
covered by a set of n disjoint pseudotrees, we can construct ñ
disjoint pseudotrees, where ñ > |U|, to cover E(Ĝ). As a result,
the proof can be proceeded following a similar reasoning as
Theorem 1 and, therefore, is omitted here. �

The condition in Corollary 1 requires that in a given disjoint
pseudotree covering ofE(Ĝ), one of the roots of each pseudotree
is a stimulated vertex. This condition is sufficient for generic
identifiability. The condition in Theorem 1 is needed when we
have more disjoint pseudotrees in a covering than the number of
stimulated vertices in Ĝ. In this case, only a partial number of
pseudotrees contains stimulated vertices in their roots, whereas
the vertices in the remaining set of pseudotrees need to satisfy the
path condition in (9), which requires based on the full topology
of Ĝ.

Compared to Lemma 2, Theorem 1 and Corollary 1 pro-
vide more integrated conditions for characterizing the generic
identifiability. The major advantage of this pseudotree cover-
ing condition in Corollary 1 over the path-based conditions
in, e.g., [32], [33], is that, rather than providing a vertexwise
analysis, it has the potential for the synthesis problem we are
interested in. Particularly, combining with Theorem 1, we ob-
tain a useful tool for allocating the minimal number of excita-
tion signals to achieve the generic identifiability of the overall
network.

Corollary 2: The minimal number K of external excitation
signals that guarantees the generic identifiability of a directed
network model setM is bounded as

max

{
|Sou(Ĝ)|, max

j∈V (̂G)
|P̂j |

}
− p ≤ K ≤ κ(Ĝ)− p (11)

where κ(Ĝ) is the minimal number of disjoint pseudotrees that
cover all the edges of Ĝ.

Proof: The lower bound is obtained immediately from
Lemma 2 as a necessary number of external excitation signals
that are required for the sources and the other vertices. The upper
bound then results from applying Theorem 1, and it suffices to
assign an independent external signal to a root of each pseudotree
to achieve generic identifiability. �

The upper bound in (11) plays a central role in this article since
it directly implies that solving the synthesis problem amounts
to finding the minimal number of disjoint pseudotrees in the
network that cover all the parameterized edges in E(Ĝ). At
this point, we relate the synthesis problem to a combinatorial
optimization problem.

Example 3: Consider the five-vertex network in Fig. 1(a), and
we find that the parameterized edges of the extended graph in
Fig. 1(b) can be covered by five disjoint pseudotrees, as shown

Fig. 4. Extended graph in Fig. 1(b) is decomposed into five disjoint
pseudotrees, which are highlighted with different colors. Since all the
parameterized edges are covered, and each stimulated vertex is located
at a root of each pseudotree, the network in Fig. 1(a) is generically
identifiable.

Fig. 5. Four disjoint pseudotrees are needed to cover all the parame-
terized edges of the extended graph in Fig. 1(b). Thus, in addition to the
white noise excitations e1, e2, and e3, only one external excitation signal
is required to achieve generic identifiability of the network in Fig. 1(a),
and assigning this excitation signal to either vertex 1 or 2 will lead to this
result.

in Fig. 4 . Observe that there is a unique stimulated vertex in each
pseudotree, which is a root. Thus, the condition in Theorem 1 is
satisfied, and we conclude that the dynamic network model set
M in Example 1 is generically identifiable.

For a simple network consisting of only a few vertices, e.g.,
Fig. 1(a), we may immediately obtain the minimal number of
excitation signals and their locations such that generic identi-
fiability is achieved (see Fig. 5). However, when a more com-
plicated graph is considered, a systematic approach is required
to decompose a graph into a minimal number of disjoint pseu-
dotrees. Thus, in the next section, we focus on an algorithmic
procedure to tackle this combinatorial problem.

B. Excitation Allocation: A Pseudotree Merging
Approach

In this section, we aim to solve an excitation allocation prob-
lem, which aims for a minimal number of external excitation
signals that are used to guarantee generic identifiability of a
network model set. To this end, a two-step scheme is developed,
where the steps correspond to the conditions in Corollary 1 and
Theorem 1, respectively. In the first step, we devise a heuristic
method to find a minimum number of disjoint pseudotrees
covering all the edges of the extended graph Ĝ. Then, the second
step is to allocate excitation signals at the roots of some selected
pseudotrees in the covering such that generic identifiability is
achieved. Hereafter, we present the detailed implementation for
the two steps.

1) Pseudotree Covering: According to (11), the smallest
number of disjoint pseudotrees that can be found to cover all of
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the edges potentially induces the smallest number of excitation
signals, which is required to identify all the modules. Based
on this argument, we tackle the following graph-theoretical
problem as the first step: Given a directed graph Ĝ, find a set of
disjoint pseudotree covering Π = {T1, T2, . . ., Tn} such that all
the edges of Ĝ are covered by Π, and |Π| is minimized.

To efficiently solve this minimal covering problem, we devise
a graph merging algorithm. Lemma 3 indicates that for any di-
rected graph Ĝ, we can always find a disjoint minimal pseudotree
covering

Π0 = {T (0)
1 , T (0)

2 , . . ., T (0)
|Π0|} (12)

where each minimal pseudotree is rooted at a vertex in V (Ĝ) \
Sin(Ĝ), withSin the set of the sinks of Ĝ. Here, |Π0| = |V (Ĝ)| −
|Sin(Ĝ)|. In other words, each vertex, besides the sinks, is the
root of its own pseudotree, consisting of all links that connect the
vertex itself to all of its out-neighbors. The proposed approach
starts with Π0 as the initial disjoint pseudotree covering, and
we then implement a specific strategy to recursively merge
the pseudotrees until there are no mergeable pseudotrees in a
covering.

As a relevant and necessary concept, the mergeability of
pseudotrees is defined as follows.

Definition 7 (Mergeability): Consider two disjoint pseu-
dotrees T1 and T2 and V (T1) ∩ V (T2) �= ∅. We say T1 is merge-
able to T2, if the following hold.

1) The union of T1 and T2, i.e., (V (T1) ∪ V (T2), E(T1) ∪
E(T2)), is also a pseudotree.

2) There is a directed path from every vertex i ∈ Υ(T2) to
every vertex j ∈ V (T1).

IfT1 is mergeable toT2, then the roots ofT2 remain the roots of
the merged pseudotree. The mergeability of a pseudotreeT1 toT2
requires thatT1 andT2 do not share any common leaf and internal
vertex. As a result, merging T1 and T2 yields a new pseudotree
T3, where Υ(T3) ⊇ Υ(T2). Note that T1 being mergeable to T2
does not necessarily mean that T2 is also mergeable to T1. Next,
we introduce an algebraic characterization of a given disjoint
pseudotree covering, which will be instrumental in our follow-up
merging approach.

Definition 8: Denote a set

M = {1, 0,∅}. (13)

Let Π = {T1, T2, . . ., Tn} be a disjoint pseudotree covering of
a directed graph. The characteristic matrix of Π is denoted by
M ∈Mn×n, whose (i, j)th entry is defined as

Mij =

⎧⎪⎨⎪⎩
1 if Ti is mergeable to Tj
∅ if V (Tj) ∩ V (Ti) = ∅
0 otherwise.

(14)

The characteristic matrix of the initial pseudotree covering
Π0 (12) is denoted by M (0). The relation between M (0)

and the adjacency matrix of Ĝ is now discussed. Let A(Ĝ) ∈
R(L+p)×(L+p) be the adjacency matrix of the directed graph
Ĝ such that [A(Ĝ)]ij = 1 if (j, i) ∈ E(Ĝ), and [A(Ĝ)]ij = 0

otherwise. Without loss of generality, we assume that A(Ĝ) is

permuted such that all zero columns corresponding to Sin(Ĝ)
are its last columns. Then, the following result holds.

Lemma 5: Given a graph Ĝ with the adjacency matrix A(Ĝ).
Denote

aij =
(
[A(Ĝ) + Ii]�i

)�
[A(Ĝ) + Ii]�j

where i, j ∈ 1, 2, . . ., |Π0|, i denotes the imaginary unit, and
[A(Ĝ) + Ii]�i indicates the ith column of A(Ĝ) + Ii. The char-
acteristic matrix M (0) of Π0 in (12) is formulated as follows:
M

(0)
ii = 0 for all i, whereas for j �= i

M
(0)
ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, Re(aij) = 0, and Im(aij) �= 0, and
[A(Ĝ)]ij �= 0

0, Re(aij) �= 0 or {Re(aij) = 0, and
Im(aij) �= 0, and [A(Ĝ)]ij = 0}

∅, aij = 0

where Re(·) and Im(·) denote the real and imaginary parts of a
complex number, respectively.

Proof: The matrix M (0) is of the size |Π0| × |Π0|, and its kth
row or column corresponds to the pseudotree Tk, which consists
of the kth vertex in Ĝ as the root and all the out-neighbors of
the kth vertex. Since vertex i cannot be merged to vertex i, it is
obvious that M

(0)
ii = 0.

The condition V (Tj) ∩ V (Ti) = ∅ in (14) is equivalent to
the situation that (i) there is no directed edge between j and
i (in either direction), and (ii) nodes i and j do not share
any out-neighbors in Ĝ. Note that condition (i) is equivalent
to [A(Ĝ)]ij = [A(Ĝ)]ji = 0, and that according to condition
(ii), there does not exist a node k such that [A(Ĝ)]kj �= 0 and
[A(Ĝ)]ki �= 0, for all k �= i, j. If i �= j is follows, then that
conditions (i) and (ii) are equivalent to aij = 0, showing that

in this situation, M
(0)
ij = ∅.

For the minimal pseudotree coveringΠ0,Ti is mergeable toTj
if nodes i and j do not share a common out-neighbor, and if there
exists a directed edge from node j to node i. The case{Re(aij) =
0 and Im(aij) �= 0} represents the situation that nodes i and j do
not have a common out-neighbor, whereas there exists a directed
edge between i and j (in either direction). For mergeability of
Ti into Tj , a directed edge needs to be present from node j to
node i, which is guaranteed by the additional requirement that
[A(Ĝ)]ij �= 0. This proves the situation M

(0)
ij = 1. The situation

M
(0)
ij = 0 appears in the remaining cases. �
Having the characteristic matrix of Π0, the following nota-

tions and operators are defined to merge the initial pseudotrees.
Define M ∈M|Π|×|Π|, and let Mi� and M�j be the ith row and
jth column of a matrix M ∈M, whereΠ is a disjoint pseudotree
covering. To feature the merging of two pseudotrees from an
algebraic point of view, we define a commutative operator

c = a� b = b� a (15)

with a, b, c ∈M, which follows the rules

1� 1 = 1, 1� 0 = 0, 1�∅ = 1

0� 0 = 0, ∅� 0 = 0, ∅�∅ = ∅. (16)
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Furthermore, we also extend this aforementioned operators to
vectors in Mn. Let ρ, μ ∈Mn be two column (or row) vec-
tors. Then, ρ� μ = μ� ρ stands for an entrywise operator that
returns a new column (or row) vector, whose ith element is
given by ρi � μi. For a given disjoint pseudotree covering Π
with |Π| = n and a set N := {1, 2, . . ., n}, we then define the
following function:

F : Mn×n ×N ×N →M(n−1)×(n−1) (17)

and M̂ = F (M , i, j) is a reduction of M obtained by the
following algebraic operations:

1) M̂ = M ;
2) row merging: M̂j� = Mi� �Mj�;
3) column merging: M̂�j = M�i �M�j ;
4) remove ith row and column of M̂ .

As will be shown next, this operation conforms to the merging
of the ith pseudotree into the jth one. Note that the order of the
row and column operations can be switched, which will not
affect the outcome M̂ .

Theorem 2: Consider a directed graph Ĝ, and let Π be a
disjoint pseudotree covering of all the edges of Ĝ where the
characteristic matrix is M . Suppose in Π, the ith pseudotree
is mergeable to the jth one. Let Π̂, with |Π̂| = |Π| − 1, be
a new covering obtained by merging the ith pseudotree into
the jth one. Then, the characteristic matrix of Π̂ is given as
M̂ = F (M , i, j).

Proof: We first show that the rules in (16) are consistent with
merging two disjoint pseudotrees in a covering. Let a pseudotree
T1 be mergeable to T2. Then, the following statements hold due
to Definition 7.

1) If either T1 or T2 cannot merge (be merged to) any other
pseudotree T3 in Π, then the union of T1 and T2 also
cannot merge (be merged to) T3. This claim corresponds
to the dominance of “0,” implied by the three equations
0� 0 = 0, 1� 0 = 0, and ∅� 0 = 0 in (16).

2) IfT1 andT3 do not share any common vertices, then merg-
ing T1 to T2 does not change the mergeability between
T2 and T3. This statement corresponds to the relations
∅� 0 = 0, ∅� 1 = 1, and ∅�∅ = ∅ in (16).

3) If both T1 and T2 are mergeable to T3, then the union of T1
and T2 is still mergeable to T3. This statement is implied
by the equation 1� 1 = 1 in (16).

Clearly, all the aforementioned statements correspond to the
operators in (16). Since the function F (M , i, j) produces a
reduced characterization matrix by the operations on the ith
and jth rows as well as the ith and jth columns following
the rules in (15), the resulting characterization matrix indicates
the mergeability of Π̂, with Ti merged to Tj and the other
pseudotrees untouched. �

Example 4: Consider a directed simple graph with ten ver-
tices, as shown in Fig. 6 . Following Lemma 3, the initial dis-
joint pseudotree covering Π0 = {T (0)

1 , T (0)
2 , . . ., T (0)

9 } in (12)
is found, and each pseudotree has a single root vertex, which
is not a sink and is labeled with the ordering number of the
pseudotree. By the definition in (14), we construct the following

Fig. 6. Directed simple graph with 11 vertices, which is decomposed
into nine disjoint pseudotrees, which are labeled with different colors.

matrix for characterizing the mergeability of Π0:

M (0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 ∅ ∅ 0 ∅ 0 ∅ ∅

0 0 1 ∅ 0 0 0 ∅ ∅

∅ 1 0 0 ∅ 0 ∅ 0 0

∅ ∅ 0 0 ∅ 0 ∅ 0 0

0 1 ∅ ∅ 0 1 0 0 ∅

∅ 0 1 0 0 0 0 0 0

0 0 ∅ ∅ 0 0 0 1 ∅

∅ ∅ 0 0 1 0 0 0 0

∅ ∅ 0 0 ∅ 0 ∅ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

Because M
(0)
12 = 1, the pseudotree T (0)

1 is mergeable to T (0)
2 .

The operation on the first two rows in M (0) leads to

M
(0)
1� �M

(0)
2� =

[
0 0 1 ∅ 0 0 0 ∅ ∅

]
while the corresponding column operation provides

M
(0)
�1 �M

(0)
�2 =

[
0 0 1 ∅ 0 0 0 ∅ ∅

]�
.

Next, we replace the second row and column by the aforemen-
tioned products, and remove the first row and column of M (0).
The reduction M (1) = F (M (0), 1, 2) then yields

M (1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 ∅ 0 0 0 ∅ ∅

1 0 0 ∅ 0 ∅ 0 0

∅ 0 0 ∅ 0 ∅ 0 0

0 ∅ ∅ 0 1 0 0 ∅

0 1 0 0 0 0 0 0

0 ∅ ∅ 0 0 0 1 ∅

∅ 0 0 1 0 0 0 0

∅ 0 0 ∅ 0 ∅ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈M8×8

which characterizes a new disjoint pseudotree covering: Π1 =

{T (1)
1 , T (1)

2 , . . ., T (1)
8 }, where T (1)

1 = T (0)
1 ∪ T (0)

2 and T (1)
i =

T (0)
i+1, for all i = 2, 3, . . ., 8.
The newly defined operation in (15) and the function (17)

allow us to represent the merging of two disjoint pseudotrees
in a covering Π by a reduction of its characteristic matrix M .
Based on this, we then proceed to a graph merging strategy that
aims for a covering with the smallest possible number of disjoint
pseudotrees. From the initial disjoint pseudotree covering Π0,
we obtain its characteristic matrix M (0), according to which, we
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Algorithm 1: Disjoint Pseudotree Merging.

Require: Extended graph Ĝ in Definition 2.
1: Initialize the disjoint pseudotree covering Π0 as in

(12), with each pseudotree minimal.
2: Construct the characteristic matrix M = M (0) in (5).
3: repeat
4: Find an entry Mij = 1, which is the only “1” entry

in the ith row of M .
5: if there are multiple rows containing a single “1”

entry then
6: Let i be the index of a row containing the most

“∅” entries.
7: end if
8: M ← F (M , i, j), and update Π by merging the ith

pseudotree to the jth one.
9: until each row of M contains more than one “1” entry.

10: repeat
11: Find the ith row of M with “1” entries and the most

“∅” entries.
12: Select Mij = 1 as any “1” entry of the ith row, and

M ← F (M , i, j); update Π by merging the ith
pseudotree to the jth one.

13: until there is no “1” entry in M .
14: return Π.

devise a heuristic algorithm to recursively integrate mergeable
pseudotrees, see the description in Algorithm 1.

The scheme in Algorithm 1 is presented in two parts. In the
first part, we find the row of the characteristic matrix with a
unique “1” entry, as we aim to merge a pseudotree Ti to Tj , if
Tj is the only pseudotree that Ti is mergeable to. If there are
multiple pairs that satisfy this condition (e.g., in Fig. 6, T2 is the
only pseudotree that T1 and T3 can be merged to), we then merge
Ti to Tj , if Ti has more nonoverlapped pseudotrees inΠ, namely,
the ith row of M contains more “∅” entries. For instance, in
Fig. 6, as T1 has more nonoverlapping pseudotrees, we merge
T1 to T2 first. The reason behind this particular operation is
that aggregating such a pair of pseudotrees would potentially
cause less influence on the subsequent merging of the other
pseudotrees in the covering. The second part of Algorithm 1
then deals with the remaining mergeable disjoint pseudotrees.
Still, we tend to merge the pairs that have less overlaps with
the other pseudotrees. When there does not exist any pair of
mergeable pseudotrees, the merging procedure is finalized.

Example 5: Consider the network in Fig. 6 and its ini-
tial disjoint pseudotree covering Π0 = {T (0)

1 , T (0)
2 , . . ., T (0)

9 },
which is characterized by the matrix in (18). Following
Algorithm 1, the following operations are taken in or-
der: M (1) = F (M (0), 1, 2), M (2) = F (M (1), 1, 2), M (3) =
F (M (2), 3, 4), and finally, we obtain

M (4) = F (M (3), 4, 5) =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ ∈M5×5.

Fig. 7. Resulting disjoint pseudotree covering of the directed graph
in Fig. 6, which is now partitioned into only five disjoint pseudotrees,
labeled with different colors.

The corresponding disjoint pseudotree covering is given
as Π̂ = {T (4)

1 , T (4)
2 , T (4)

3 , T (4)
4 , T (4)

5 }, with T (4)
1 = T (0)

1 ∪
T (0)
2 ∪ T (0)

3 , T 4
2 = T (0)

4 , T (4)
3 = T (0)

5 ∪ T (0)
6 , T (4)

4 = T (0)
7 ∪

T (0)
8 , and T (4)

5 = T (0)
9 . The resulting disjoint pseudotrees are

depicted in Fig. 7 , with their roots being labeled with numbers.
Remark 1: Algorithm 1 provides a heuristic but scalable pro-

cedure to find a local optimal solution in the sense that there will
be no mergeable pseudotrees in the obtained covering. We may
choose alternative heuristic merging procedures, e.g., a simple
random merging, while the presented merging approach will
potentially lead to a fewer number of pseudotrees. It is possible
to reach the exact minimum for dynamic networks of small size,
for instance, the graphs in Figs. 5 and 6. However, for large-scale
networks with, e.g., up to hundreds or thousands of vertices,
it is hard to guarantee the minimality in general. It is worth
emphasizing that finding the minimal covering reflects as a new
combinatorial optimization problem, whose optimal solution is
not unique. Exploring the solution for this optimization problem
itself requires a significant effort and can lead to even new
contributions to graph theory. Thus, it is beyond the scope of
this article.

2) Allocation of Excitation Signals: For the synthesis
problem of allocating excitation signals in a dynamic network for
guaranteeing generic identifiability of the network model set, we
apply Algorithm 1 to its extended graph Ĝ as a first step, aiming
to decompose Ĝ into a minimal number of disjoint pseudotrees
that cover all the parameterized edges of Ĝ. Then, we proceed to
the second step of our approach, which determines the locations
of external excitation signals for the generic identifiability ofM.
Specifically, in this step, we aim to solve the following problem:
Given the extended graph Ĝ of a dynamic network model set
M, and let Π be a disjoint pseudotree covering of Ĝ, in which
there do not exist mergeable pseudotrees. How to allocate the
external excitation signals to makeM generically identifiable?

To tackle the allocation problem, the process noises in the dy-
namic network have to be considered, which results in two facts:
First, in the setting of the extended graph Ĝ in Definition 2, the
vertices in the set V̂ , which are also the roots of |V̂ | pseudotrees
in Π, have been already excited by white noises in e(t), or more
precisely, eθ(t) in (10). Second, it is also possible that one of
the roots of a pseudotree in Π has been excited by e0(t) in (10),
then it is not necessary to assign an excitation signal to a root of
this pseudotree.

We thereby have a set Ve ⊂ V (Ĝ) with |Ve| = p, in which
the vertices are stimulated by white noises. More precisely, Ve

includes V̂ and the vertices inV that are affected by e0(t). Define

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 07,2022 at 10:33:39 UTC from IEEE Xplore.  Restrictions apply. 



CHENG et al.: ALLOCATION OF EXCITATION SIGNALS FOR GENERIC IDENTIFIABILITY OF LINEAR DYNAMIC NETWORKS 703

Fig. 8. One of the solutions for allocating the excitation signals is to
assign the shadowed vertices as the excited ones.

Algorithm 2: Allocation of Excitation Signals.
Require: The disjoint pseudotree covering Π obtained
from Algorithm 1.

1: Πs ← Π
2: for Tk ∈ Π, k = 1 : |Π| do
3: if Υ(Tk) ∩ Ve �= ∅ then
4: Πs ← Πs \ Tk.
5: end if
6: end for
7: LetR := {τ1, τ2, . . ., τ|Πs|}, with τi a root of Ti ∈ Πs

8: for Tk ∈ Πs, k = 1 : |Πs| do
9: R̂ ← R \ τk

10: if b
̂R∪̂V→̂Pj = |P̂j |, ∀ j ∈ V (Tk) then

11: R ← R \ τk.
12: end if
13: end for
14: returnR.

a set Πs ⊆ Π, which is generated by removing the elements in
Π that are rooted at Ve. Then, the following result is guaranteed
by Corollary 1.

Corollary 3: Consider a set of vertices R :=
{τ1, τ2, . . ., τ|Πs|}, where τi is a root of Ti ∈ Πs. If all the
vertices in R are excited, then the dynamic network model set
M is generically identifiable.

Consequently, a direct strategy is to place an independent
excitation signal to a root of each disjoint pseudotree in Πs.
However, the condition Theorem 1 allows us to further reduce
the number of excitation signals. Thereby, we continue to check
the necessity of each stimulated vertex in R. If there exists a
pseudotree Tk ∈ Πs such that each vertex in V (Tk) satisfies the
vertex-disjoint condition b

̂R∪̂V→̂Pj = |P̂j |, where R̂ := R \ τk,
we then remove τk fromR. Simply put, if removing an element
in R does not change the generic identifiability of the network
model set M, we can remove it. The detailed procedure is
summarized in Algorithm 2, which eliminates the removable
elements inR iteratively.

Example 6: Continue the network example in Fig. 7,
which depicts a disjoint pseudotree covering resulting from
Algorithm 1. Suppose that the roots of the pseudotrees 2 and 5
are excited by white noises in e. Then, through Algorithm 2, we
do not need to excite the root of the pseudotree 3. Thus, only two
additional excitation signals in r are required to achieve generic

identifiability, and one of the possible allocations is illustrated
in Fig. 8 . Note that in Ĝ, there are two sources, and the maximal
in-degree is 4. Thus, it follows from (11) thatK is lower bounded
by max{|Sou(Ĝ)|,maxj∈V (̂G) |P̂j |} − p = 2, which means that
2 is the minimal number of excitation signals in r that are needed
for generic identifiability.

Remark 2: Because of Assumption 3, all nonzero modules in
G need to be parameterized in order for the graph-based result
to be applicable. However, also in case of nonparameterized,
known modules in G that are unequal zero, the results apply as
long as the known modules in G are chosen generic values, i.e.,
they do not introduce any dependence relations. In this situation,
the pseudotree covering results presented in this section remain
to hold, but require that only the parameterized modules in G
and H need to be covered by pseudotrees. A further analysis of
this situation is beyond the scope of this article.

VI. DUAL PROBLEM: SELECTING MEASURED VERTICES

In the previous sections, we have considered the situation
that all the vertex signals are measured, whereas only partial
vertices are selected to be excited. The works in, e.g., [30] and
[32], consider a dual model setting, in which all the vertices are
stimulated by independent excitation sources, but only a subset
of vertex signals are measured. In this section, we show that our
approach can be also adapted to solve the dual problem in this
setting, which is to select a minimal number of measured vertices
for generic identifiability. Specifically, this section considers a
network with the following dynamics:

w(t) = G(q)w(t) + r(t) + v(t)

y(t) = Cw(t)
(19)

where w(t), r(t), and v(t) are vertex signals, excitation signals,
and process noises defined in (2), respectively. The measurement
signal y(t) ∈ Rm is a vector consisting of selected internal
variables in the network (19), and C ∈ Rm×L is a binary matrix
with Cij = 1 if yi(t) = wj(t), and Cij = 0 otherwise. For ease
of exposition, we will consider the situation that v ≡ 0. Define

M̌ := {G(q, θ), θ ∈ Θ} (20)

as the network model set associating with dynamic networks
in form of (19), where all the nonzero entries in G(q, θ) are
parameterized. We are interested in the question: How to select
a minimal number of measurement signals y(t) such that M̌
is generically identifiable, i.e., almost all network modules Gji

can be uniquely identified from C(I −G)−1?
Following Bazanella et al [31] and Hendrickx et al [32], a

path-based condition for the generic identifiability of M̌ is that
the maximum number of mutually vertex-disjoint paths from
N+

j to C is equal to |N+
j | for all i ∈ V (Ǧ), whereN+

j is the set
of the out-neighbors of j.

Thereby, we define the concept of antipseudotrees. A simple
connected graph Ť is an antipseudotree if |N+

i | ≤ 1, for all
i ∈ V (Ť ). An antipseudotree can be generated by reversing the
orientations of all the edges of a pseudotree in Definition 3.
Furthermore, Υ(Ť ) is a set of roots of an antipseudotree Ť such
that each vertex in Ť has a unique directed path toward all the
vertices in Υ(Ť ). Two antipseudotrees are disjoint if they do
not share any common edges, and all the edges incident to each
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Fig. 9. Network can be partitioned into four antipseudotrees high-
lighted by different colors. We select the shadowed vertices as mea-
surement signals to achieve generic identifiability.

vertex are included in the same antipseudotree. Analogously, we
can characterize the generic identifiability of a dynamic network
model set M̌ using disjoint antipseudotrees.

Proposition 2: Consider a network model set M̌ composed
of network models described in (19). LetY := {y1, y2, . . ., ym}
be the set of measured vertices. The network model set M̌
is generically identifiable if and only if one of the following
conditions hold.

1) There exists a set of disjoint antipseudotrees, Π̌ =
{Ť1, Ť2, . . ., Ťn} with n ≤ m, such that each antipseu-
dotree has at least one root vertex being measured,
namely, Υ(Ťk) ∩ Y �= ∅ ∀ k ∈ {1, 2, . . ., n}.

2) There exists a set of disjoint antipseudotrees,
Π̌ = {Ť1, Ť2, . . ., Ťn} with n > m, such that
yk ∈ Υ(Ťk) ∀ k ∈ {1, 2, . . .,m} and bN+

j →Y
=

|N̂+
j | ∀ j ∈ V (Ťm+1) ∪ · · · ∪ V (Ťn).

The proof follows a similar reasoning as the proof of
Theorem 1 and Corollary 1, thus it is omitted here. Moreover, the
minimal number of measurement signals that guarantees generic
identifiability is bounded as

max

{
|Sin(G)|, max

j∈V (G)
|N+

j |
}
≤ m ≤ κ̌(G)

where G is the underlying graph of the network (19), and κ̌(G)
is the minimal number of disjoint antipseudotrees that cover all
the parameterized edges in G.

Analogously, we can devise a similar algorithm as Algo-
rithm 1 to find the minimal covering and then remove unneces-
sary measurements as Algorithm 2 such that a set of measured
vertices are selected. Consider an example shown in Fig. 9,
which is taken from Hendrickx et al [32]. The network in this
example can be decomposed into four disjoint antipseudotrees.
Our approach then suggests taking the measurements from the
roots of these antipseudotrees. Consequently, generic identifia-
bility can be achieved with four measured vertices.

VII. CONCLUSION

In this article, we have addressed an excitation allocation
problem for dynamic networks. Considering correlations be-
tween disturbances and nonparameterized modules to be present
in a network model set, the goal is to select a minimal number
of external excitation signals such that the model set becomes
generically identifiable from measurement data. This provides
conditions for the consistent identification of all parameterized
modules in the model set. To this end, the notion of pseudotrees is

introduced, and a novel necessary and sufficient graph-theoretic
condition has been provided based on disjoint pseudotrees to
characterize the generic identifiability of a dynamic network
model set. Based on this condition, an effective approach has
been proposed, aiming to find a minimal number of excitation
signals and their locations, where the number of the excitations
is upper-bounded by the minimal number of disjoint pseudotrees
that cover all the edges of the extended graph, and the locations
of the excitations can be potentially selected as the roots of
these pseudotrees. For future work, the identifiability problem
in a dynamic network with partial measured and partial excited
vertices is of interest. Specifically, it is worth investigating the
research question how to place excitation signals in a network to
achieve identifiability in the case that only partial measurements
are available.
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