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Local module identification in dynamic networks
with correlated noise: the full input case

Paul M.J. Van den Hof, Karthik R. Ramaswamy, Arne G. Dankers and Giulio Bottegal

Abstract— The identification of local modules in dynamic
networks with known topology has recently been addressed
by formulating conditions for arriving at consistent estimates
of the module dynamics, typically under the assumption of
having disturbances that are uncorrelated over the different
nodes. The conditions typically reflect the selection of a set
of node signals that are taken as predictor inputs in a MISO
identification setup. In this paper an extension is made to arrive
at an identification setup for the situation that process noises
on the different node signals can be correlated with each other.
In this situation the local module may need to be embedded
in a MIMO identification setup for arriving at a consistent
estimate with maximum likelihood properties. This requires
the proper treatment of confounding variables. The result is
an algorithm that, based on the given network topology and
disturbance correlation structure, selects an appropriate set of
node signals as predictor inputs and outputs in a MISO or
MIMO identification setup. As a first step in the analysis, we
consider the situation where the selected output node signals
are predicted based on all of their in-neighbor node signals in
the network.

I. INTRODUCTION

In recent years increasing attention has been given to the
development of new tools for the identification of large-scale
interconnected systems, also known as dynamic networks.
These networks are typically thought of as a set of measur-
able signals (the node signals) interconnected through linear
dynamic systems (the modules), possibly driven by external
excitations (the reference signals). Among the literature
on this topic, we can distinguish three main categories of
research. The first one focuses on identifying the topology
of the dynamic network [1], [2], [3], [4], [5]. The second
category concerns identification of the full network dynamics
including aspects of identifiability [6], [7], [8], [9] while the
third one deals with identification of a specific component
(module) of the network, assuming that the network topology
is known (the so called local module identification, see [10],
[11], [12], [13], [14]).

In this paper we will further expand the work on the
local module identification problem. In [10], the classical
direct-method [15] for closed-loop identification has been
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generalized to a dynamic network framework using a MISO
identification setup. Consistent estimates of the target mod-
ule can be obtained when the network topology is known
and all the node signals in the MISO identification setup
are measured. The work has been extended in [16], [17]
towards the situation where some node signals might be non-
measurable, leading to an additional predictor input selection
problem. A similar setup has also been studied in [11],
where an approach has been presented based on empirical
Bayesian methods to reduce the variance of the target module
estimates. In [14] and [12], dynamic networks having node
measurements corrupted by sensor noise have been studied,
and informative experiments for consistent local module
estimates have been addressed in [13].

A standing assumption in the aforementioned works [10],
[11], [13], [17] is that the process noises entering the nodes
of the dynamic network are uncorrelated with each other.
This assumption facilitates the analysis and the develop-
ment of methods for local module identification, reaching
consistent module estimates for either the direct or indirect
methods. However, when process noises are correlated over
the nodes, the consistency results for the considered MISO
direct method collapse. In this situation it is seems necessary
to consider also the noise topology or disturbance correlation
structure, when selecting an appropriate identification setup.
Even though the two-stage and indirect methods in [14],
[12], [13] can handle the situation of correlated noise and
deliver consistent estimates, the obtained estimates will not
have minimum variance.

In this paper we precisely consider the situation of hav-
ing dynamic networks with disturbance signals on differ-
ent nodes that possibly are correlated, while our target
moves from consistency only, to also minimum variance
(or Maximum Likelihood (ML)) properties of the obtained
estimates. While one could use techniques for full network
identification (e.g., [6]), our aim is to develop a method that
uses only local information. In this way, we avoid (i) the
need to collect node measurements that are “far away” from
the target module, and (ii) the need to identify unnecessary
modules that would come with the price of higher variance in
the estimates. We will assume that the topology of network
is known, as well as the (Boolean) correlation structure of
the noise disturbances.

Using the reasoning first introduced [18], we build a
constructive procedure that, choosing a limited number of
predictor inputs and predicted outputs, builds an identi-
fication setup that guarantees maximum likelihood (ML)
properties (and thus asymptotic minimum variance) when
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applying a direct prediction error identification method. In
this situation we have to deal with so-called confounding
variables (see e.g. [18], [19]), that is, unmeasured variables
that directly or indirectly influence both the predicted output
and the predictor inputs, and lead to lack of consistency.
A direct influence, caused by correlated process noise, can
be treated by adding predicted outputs to our identification
setting, while an indirect influence, caused by unmeasured
nodes, can be resolved by adding predictor inputs. In this
paper, we restrict our attention to the situation where all
the nodes that are in-neighbors of predicted outputs are
measured, which we refer to as the full input case.

This paper is organized as follows. In section II, the
dynamic network setup is defined. Section III provides a
summary of available results from the existing literature.
Confounding variables are discussed in, and Section V
provides an algorithm for selecting the node signals in the
identification setup. This setup is then analyzed in Section
VI, and the main results are provided in Section VII. The
paper is concluded with two illustrative examples. The proofs
of all results are collected in the extended report [20].

II. NETWORK AND IDENTIFICATION SETUP

Following the basic setup of [10], a dynamic network is
built up out of L scalar internal variables or nodes wj , j =
1, . . . , L, and K external variables rk, k = 1, . . .K. Each
internal variable is described as:

wj(t) =

L∑
l=1

l 6=j

Gjl(q)wl(t) + rj(t) + vj(t) (1)

where q−1 is the delay operator, i.e. q−1wj(t) = wj(t− 1);

• Gjl are proper rational transfer functions, referred to as
modules.

• rj are external variables that can directly be manipu-
lated by the user and that may or may not be present;
if rj is not present it is replaced by rj = 0.

• vj is process noise, where the vector process v =
[v1 · · · vL]T is modelled as a stationary stochastic pro-
cess with rational spectral density Φv(ω), such that there
exists a white noise process e := [e1 · · · eL]T , with
covariance matrix Λ > 0 such that v(t) = H(q)e(t),
where H is square, stable, monic and minimum-phase.
The situation of correlated noise refers to the case that
Φv(ω) and H are non-diagonal, while we assume that
we know a priori which entries of Φv are nonzero.

We will assume that the standard regularity conditions on the
data are satisfied that are required for convergence results of
prediction error identification method1.

When combining the L node signals we arrive at the full

1See [15] page 249. This includes the property that e(t) has bounded
moments of order higher than 4.

network expression
w1

w2

...
wL

=


0 G12 · · · G1L

G21 0
. . .

...
...

. . . . . . GL−1 L

GL1 · · · GL L−1 0



w1

w2

...
wL

+

r1

r2

...
rK

+H

e1

e2

...
eL


which results in the matrix equation:

w = Gw + r +He. (2)

The identification problem to be considered is the problem
of identifying one particular module Gji(q) on the basis of
a subset of measured variables w, and possibly r.

Let us define Nj as the set of node indices k such that
Gjk 6= 0, i.e. the node signals in Nj are the in-neighbors
of the node signal wj . Let Dj denote the set of indices of
the internal variables that are chosen as predictor inputs.
Let Zj denote the set of indices not in {j} ∪ Dj , i.e.
Zj = {1, . . . , L} \ {{j} ∪ Dj}. Let wD denote the vector
[wk1 · · · wkn ]T , where {k1, . . . , kn} = Dj . Let rD denote
the vector [rk1 · · · rkn ]T , where {k1, . . . , kn} = Dj , and
where the `th entry is zero if r` is not present in the network.
The vectors wZ , vD, vZ and rZ are defined analogously. The
ordering of the elements of wD, vD, and rD is not important,
as long as it is the same for all vectors. The transfer function
matrix between wD and wj is denoted G0

jD. The other transfer
function matrices are defined analogously. To illustrate the
notation, consider the network sketched in Figure 1, and let
module G0

21 be the target module for identification.

Fig. 1. Example network

Then j = 2, i = 1; Nj = {1, 4}. If we choose the set
of predictor inputs as Dj = Nj , then the set of remaining
(nonmeasured) signals, becomes Zj = {3, 5, 6}.

By this notation, the network equation (2) is rewritten as:wjwD

wZ

 =

 0 G0
jD G0

jZ

G0
Dj G0

DD G0
DZ

G0
Zj G0

ZD G0
ZZ

wjwD

wZ

+

vjvD
vZ

+

rjrD
rZ

 , (3)

where G0
DD and G0

ZZ have zeros on the diagonal.
Identification of module G0

ji can now be done by selecting
Dj such that i ∈ Dj , and subsequently estimating a multiple-
input single output model for the transfer functions in GjD.
This can be done by considering the one-step-ahead predic-
tor2 ŵj(t|t− 1) := Ē{wj(t) | wt−1

j , wtDj
}, and the resulting

2Ē refers to limN→∞
1
N

∑N
t=1 E, and w`

j and w`
Dj

refer to signal
samples wj(τ) and wk(τ), k ∈ Dj , respectively, for all τ ≤ `.



prediction error ([15]) εj(t, θ) = wj(t) − ŵj(t|t − 1, θ),
leading to

εj(t,θ) = Hj(θ)
−1[wj −

∑
k∈Dj

Gjk(θ)wk − rj ] (4)

where arguments q and t have been dropped for notational
clarity, and Hj is a scalar noise model for the disturbance
vj(t). The parameterized transfer functions Gjk(θ), k ∈ Dj
and Hj(θ) are estimated by minimizing the sum of squared
(prediction) errors: Vj(θ) = 1

N

∑N−1
t=0 ε2

j (t, θ), where N is
the length of the data set. We refer to this identification
method as the direct method, [10]. Let θ̂N denote the
minimizing argument of Vj(θ).

III. AVAILABLE RESULTS

The following results are available from previous work:
• When Dj is chosen equal to Nj and noise vj is

uncorrelated to all vk that have a path to wj , then G0
ji

can be consistently estimated in a MISO setup, provided
that there is enough excitation in the predictor input
signals, see [10].

• When Dj is a subset of Nj , confounding variables3 can
occur in the estimation problem, and these have to be
taken into account in the choice of Dj in order to arrive
at consistent estimates of G0

ji, see [17]. This situation
has been analyzed for uncorrelated disturbances only,
i.e. Φv being diagonal.

• In [19] relaxed conditions for the previous situation have
been formulated, while still staying in the context of
MISO identification with Φv being diagonal. This is
particularly done by choosing additional predictor input
signals that are not in Nj ,.i.e. that are no in-neighbors
of the output wj of the target module.

• Irrespective of noise correlations, an indirect/two-stage
identification method can be used to arrive at consistent
estimates of G0

ji, if particular conditions on Dj are
satisfied, [10], [17], [13]. However the drawback of in-
direct methods is that they do not allow for a maximum
likelihood analysis, i.e. they will not lead to minimum
variance results.

The step that we would like to make in this paper, is to go
beyond consistency properties, and to formulate an identifi-
cation setup that leads to Maximum Likelihood properties,
and thus also minimum variance properties, of the estimated
module, for the situation that the disturbance signals can
be correlated, i.e. Φv not necessarily being diagonal. This
requires a more careful treatment and modelling of the noise
that is acting on the different node signals. In [18] a two-
node example network has been studied, which has led to
the following two suggestions:
• confounding variables can be dealt with by modelling

correlated disturbances on the node signals, and
• this can be done by moving from a MISO identification

setup to a MIMO setup.

3A confounding variable is an unmeasured variable that induces correla-
tion between the input and output signal of an estimation problem. [21]. A
formal definition follows in Definition 1.

These suggestions are being worked out in the current paper,
and, as a first step in this analysis, we will stay in the
situation of “full input modeling”, meaning that for every
node signal that is included as a predicted output we will
include all in-neighbors in the network as predictor input.
We will first present an example to explain the mechanism.

Example 1: Consider the network sketched in Figure 1,
and let module G21 be the target module for identification.
If the node signals w1, w2 and w4 can be measured, then a
two-input one-output model with inputs w1, w4 and output
w2 will (under the appropriate conditions) lead to a consistent
estimate of G21 and G24, provided that the disturbance signal
v2 is uncorrelated to the signals v1 and v4. However if e.g.
v4 and v2 are dynamically correlated, then consistency is
lost for this approach. A solution is then to include w4 in
the set of predicted outputs, and by adding node signal w3

as predictor input for w4. We then combine predicting w2

on the basis of (w1, w4) with predicting w4 on the basis
of w3. The correlation between v2 and v4 is then covered
by modelling a 2× 2 non-diagonal noise model of the joint
process (v2, v4).

In the next sections we will formalize the procedure as
sketched in Example 1 for general networks.

IV. CONCEPTS AND NOTATION

Definition 1 (confounding variable): Consider a dynamic
network defined by

w = Gw +He+ r (5)

with cov(e) = I , and consider the graph related to this
network, with node signals w and e. Let wX and wY be two
subsets of measured node signals in w, and let wZ be the set
of unmeasured node signals in w.
Then a noise component e` in e is a confounding variable
for the estimation problem wX → wY , if in the graph there
exist simultaneous paths4 from e` to node signals wk, k ∈ X
and wn, n ∈ Y , while these paths are either direct5 or only
run through nodes that are in wZ . �

We will denote wY as the node signals in w that serve
as predicted outputs, and wD as the node signals in w that
serve as predictor inputs. Next we decompose wY and wD in
disjoint sets according to: Y = Q ∪ {o} ; D = Q ∪ A ∪ B
where wQ are the node signals that are common in wY and
wD; wo is the output wj of the target module; if j ∈ Q
then {o} is void; A ⊂ NY and B 6⊂ NY , to be specified
later on. In this situation the measured nodes will be wD∪Y
and the unmeasured nodes wZ will be determined by the
set Z = L\{D ∪ Y}, where L = {1, 2, · · ·L}. There
can exist two types of confounding variable namely direct
and indirect confounding variable. For direct confounding
variables the simultaneous paths mentioned in the definition
are both direct paths, while in all other cases we refer to
the confounding variables as indirect confounding variables.

4A simultaneous path from e1 to node signal w1 and w2 implies that
there exist a path from e1 to w1 as well as from e1 to w2.

5A direct path from e1 to node signal w1 implies that there exist a path
from e1 to w1 which do not pass through nodes in w.



Fig. 2. A simple network with 3 nodes w1, w2, w3 and unmeasured noise
sources e1, e2 and e3. G12 is the target module to be identified.

For example, in the network as shown in Figure 2 with
D = {2}, Y = {1} and Z = {3}, for the estimation problem
w2 → w1, e2 is a direct confounding variable since it has
a simultaneous path to w1 and w2 where both the paths
are direct paths. Meanwhile e3 is an indirect confounding
variable since it has a simultaneous path to w1 and w2 where
one of the path is an unmeasured path6.

V. ALGORITHM FOR SIGNAL SELECTION: FULL INPUT
CASE

In order to arrive at an appropriate identification setup we
will take the following strategy:
• We start by constructing sets Q and A in such a way

that all w-in-neighbors of wY are included in wQ∪A and
that all disturbance terms vk, k ∈ A are uncorrelated to
disturbance terms v`, ` ∈ Y . In this way we handle the
direct confounding variables.

• Then we choose wB as a subset of nodes that are not
in wY nor in wA. This set needs to be introduced to
deal with the indirect confounding variables, and will
be further specified in Section VII.

• Finally, we define the identification setup as the estima-
tion problem wD → wY .

The conditions that need to be imposed on the selection of
wB in order to arrive at attractive properties of the estimation
results, will be the main subject of analysis in this paper.

The following algorithm formalizes the procedure as indi-
cated above.

Algorithm A
1) Select target module Gji
2) Include j in the index set Y of node variables that are

to be predicted.
3) For every element x of Y:

a) For every k ∈ Nx:
• include k in D, and
• if vk is correlated with any w`, ` ∈ Y , then

include k in Y;
b) If Y has changed, start step 3 from the beginning

again.
4) Determine Q as the intersection of Y and D;
5) If j /∈ Q then set wo = wj , else wo is void;
6) Determine A = D\Q;
7) Make a selection B of node signals that are not in Y

and not in A.
When this algorithm finishes, then the set Y contains the

index set of to be predicted node variables, while for each

6An unmeasured path is a path that runs through nodes in wZ only.
Analogously, we can define unmeasured loop through a node wi.

predicted node variable x in this set, the set of predictor
inputs is Nx.

VI. MIMO IDENTIFICATION SETUP

On the basis of the decomposition of node signals as
defined in the previous section we are going to rewrite the
system’s equations (5) in the following structured form:
wQ

wo
wB

wA

wZ

 =


GQQ GQo GQB GQA GQZ

GoQ Goo GoB GoA GoZ
GBQ GBo GBB GBA GBZ

GAQ GAo GAB GAA GAZ

GZQ GZo GZB GZA GZZ



wQ

wo
wB

wA

wZ

+He (6)

where we make the notation agreement that the matrix H
is not necessarily monic, and the scaling of the white noise
process e is such that cov(e) = I . Without loss of generality,
we can assume r = 0 for the sake of brevity.

If we follow Algorithm A for the signal selection then we
satisfy the following assumption.

Assumption 1: All w-in-neighbours of wY are collected in
wQ∪A, and all disturbance signals vA are uncorrelated to vY .

Proposition 1: Under the conditions of Assumption 1 it
follows that in (6), (a) GQZ = GoZ = GQB = GoB = 0; (b)
Goo = 0; (c) If wo is present then GQo = 0. �

Proposition 2: Under the conditions of Assumption 1, the
system equations for the measured variables wD ∪wY can be
written as

wQ

wo
wB

wA

 =


GQQ 0 0 GQA

GoQ 0 0 GoA
ĞBQ ĞBo ĞBB ĞBA

ĞAQ ĞAo ĞAB ĞAA



wQ

wo
wB

wA

+ H̆e. (7)

In the sequel we are going to formulate conditions on
the choice of node variables in wB, such that the systems
equations for the output variables in wY can be written as[

wQ

wo

]
︸︷︷︸
wY

=

[
Ḡ0

QQ Ḡ0
QB Ḡ0

QA

Ḡ0
oQ Ḡ0

oB Ḡ0
oA

]
︸ ︷︷ ︸

Ḡ0

wQ

wB

wA


︸ ︷︷ ︸
wD

+

[
H̄0

QQ H̄0
Qo

H̄0
oQ H̄0

oo

]
︸ ︷︷ ︸

H̄0

[
ξQ
ξo

]
︸︷︷︸
ξY

(8)

with ξQ and ξo white noise processes with dimensions
conforming to wQ and wo, respectively, with cov(ξY) = Λ̄
and with H̄0 being monic, stable and stably invertible.
In the situation of a network system with the system’s
equations as in (8) we can set up a predictor model
based on a parametrized model set determined by M :={

(Ḡ(θ), H̄(θ), Λ̄(θ)), θ ∈ Θ
}

, while the actual data gener-
ating system is represented by S = (Ḡ(θo), H̄(θo), Λ̄(θ0)).
The corresponding identification problem is defined by con-
sidering the one-step-ahead prediction of wY , according to
ŵY(t|t− 1) := E{wY(t) | wt−1

Y , wtD}, where wtD denotes the
past of wD, i.e. {wD(k), k ≤ t}. The resulting prediction error
ε(t, θ) := wY(t)− ŵY(t|t− 1; θ) then becomes:

ε(t, θ) = H̄(q, θ)−1
[
wY(t)− Ḡ(q, θ)wD(t)

]
, (9)

and the weighted least squares identification criterion

θ̂N = arg min
θ

1

N

N−1∑
t=0

εT (t, θ)Wε(t, θ), (10)



with W any positive definite weighting matrix. This pa-
rameter estimate then leads to an estimated subnetwork
GYD(q, θ̂N ), with the estimated target module Gji(q, θ̂N ) as
a component of this.

VII. MAIN RESULTS

First we will formulate conditions for the selection of
the blocking node variables wB, that will allow to derive
consistent identification results next.

Property 1: Let the node signals wB be chosen to satisfy
the following properties:

1) If, in the original network (6), there are no confounding
variables for the estimation problem wA → (wQ, wo),
then B is void implying that wB is not present;

2) If, in the original network (6), there are confounding
variables for the estimation problem wA → (wQ, wo),
then all of the following conditions are satisfied:
a. For any confounding variable for the estimation

problem wA → (wQ, wo), the paths from the con-
founding variable to a node signal wA is blocked
by a node signal in wB, where the paths are either
direct or unmeasured;

b. For every simultaneous path from any ek in e to
node signals in wB and wA, at least one of the paths
should pass through nodes in wL\Z . Alternatively
formulated: the nonmodelled disturbances on wB

and wA are uncorrelated;
c. There are no direct or unmeasured paths from wi

to node variables in wB;
d. There are no direct or unmeasured paths from wj

to node variables in wB. �
Next we can formulate the main consistency result of this

paper.
Theorem 1: Consider a (MIMO) network identification

setup with predictor inputs wD and predicted outputs wY ,
satisfying the conditions of Assumption 1 (full input case).
Then a prediction error identification method according to
(9)-(10), applied to a parametrized model setM will provide
a consistent estimate of the target module G0

ji, if
1) M is chosen to satisfy S ∈ M;
2) The blocking node signals wB are chosen to satisfy

Property 1;
3) Φκ(ω) > 0 for a sufficiently high number of frequen-

cies, where κ(t) :=
[
w>D ξ>Q wo

]>
;

4) All the elements in GQQ, GQA, GoQ, GoA are strictly
proper (or) all existing paths/loops from wQ, wo, wB to
wQ and from wQ, wo, wB to wo have at least a delay. �

Conditions 1,2,4 are (generalizations of) the typical con-
sistency conditions for closed-loop and networked systems
[10]. There are typically two major conditions for arriving
at consistency of the target module Gji: one needs to be
able to deal with the confounding variables through the
selection of an appropriate set of (blocking) node variables
wB that is included as predictor input, and there should be
enough excitation present in the node signals. Note that this
excitation condition may require that there are external exci-
tation signals present at some locations, see also [22]. Note

that since we are using a direct method for identification,
the signals r are not directly used in the predictor model,
although they serve the purpose of providing excitation in
the network.

Since in the result of Theorem 1 we arrive at white
innovation signals, the result can be extended to formulate
Maximum Likelihood properties.

Theorem 2: Consider the situation of Theorem 1, and let
the conditions for consistency be satisfied. Let ξY be normally
distributed, and let Λ̄(θ) be parametrized independently from
Ḡ(θ) and H̄(θ). Then, under zero initial conditions, the
Maximum Likelihood estimate of θ0 is

θ̂ML
N = arg min

θ
det

(
1

N

N∑
t=1

ε(t, θ)εT (t, θ)

)
(11)

Λ(θ̂ML
N ) =

1

N

N∑
t=1

ε(t, θ̂ML
N )εT (t, θ̂ML

N ). (12)

Proof: Can be shown by following a similar reasoning as
in Theorem 1 of [6]. �

VIII. EXAMPLES

In this section we will apply the developed local module
identification methodology to two examples of dynamic
networks. First we will consider the dynamic network in
example 1 where v2 and v4 are mutually correlated while
the other disturbance signals are uncorrelated with these and
with each other. The target of identification is module G21,
and all node signals are available for measurements. Using
the identification method developed in this paper, we first
select the signals wQ, wo, wA using the algorithm A. Since
v2 and v4 are correlated we choose them both as outputs.
Consequently, w1, w3 and w4 are chosen as inputs, so that

Y = {2, 4} ; D = {1, 4, 3} (13)
Q = Y ∩ D = {4} ; A = D\Q = {1, 3} (14)

wo = w2. (15)
For the selection of wB, according to Property 1, we need
to check the presence of confounding variables. Since all
disturbance terms vk, k ∈ Z ∪A are uncorrelated to all dis-
turbance terms vl, l ∈ Y , there are no confounding variables
for the estimation problem wA → (wQ, wo). Therefore wB is
void. Now we have the predictor inputs wD and the predicted
outputs wY for the MIMO identification setup that will satisfy
the essential conditions of Theorems 1 and 2.

Example 2: Consider the network sketched in Figure 3,
and let module G12 be the target module for identification.
The disturbance correlation structure in the network is pre-
sented in Figure 3 with modules in red indicating the noise
dynamics.
The direct method using a MISO predictor, as addressed in
[10], does not provide a consistent estimate of G12 since the
disturbance term v1 is correlated with v2 as well as v3 and
therefore we resort to the identification framework developed
in this paper. Similar to the previous example, the first step
will be selection of wQ, wo, wA using the algorithm A.

First we select w1 as output and w2 and w3 as inputs.
Since v2 and v3 are correlated with v1, both w2 and w3



Fig. 3. Example network

need to be added as outputs too. Then w4 and w5 need to be
added as inputs. As a result of the first six steps in algorithm
A we get,

Y = {1, 2, 3} ; D = {2, 3, 4, 5} (16)
Q = Y ∩ D = {2, 3} ; A = D\Q = {4, 5} (17)

wo = w1. (18)
In the resulting situation e8 acts as a confounding variable
that affects both input w4 and output w2. As per condition 2a
of Property 1, the path from e8 → w4 should be blocked by
a node signal in wB, which can be either w8 or w6. In order
to choose the node signals wB, we also need the conditions
2b, 2c and 2d in Property 1 to be satisfied. w6 cannot be
chosen in wB since it does not satisfy conditions 2b and
2c in Property 1. The former condition is not satisfied due
to the simultaneous path from e4 in eA to w6 and w4 and
the latter condition is not satisfied due to the path from w2

in wi → w6. When w8 is chosen in wB, the conditions in
Property 1 are satisfied and hence B = {8}. Now we have
the predictor inputs wD and the predicted outputs wY for the
MIMO identification setup that provide the consistent and
maximum likelihood estimation results of G12.

IX. CONCLUSIONS

A new local module identification approach has been
presented to identify local modules in a dynamic network
with given topology, addressing the situation that process
noise on different nodes can be correlated with each other.
For this case, it is shown that the problem can be solved
by moving from a MISO to a MIMO identification setup.
In this setup the target module is embedded in a MIMO
problem with appropriately chosen inputs and outputs, that
warrant the consistent estimation of the target module with
maximum likelihood properties. A key part of the procedure
is the handling of direct and indirect confounding variables,
through the introduction of appropriately chosen additional
predictor input node signals (blocking nodes) and predicted
output node signals respectively. We have considered the
“full input” case, implying that all in-neighbours of an output
node are included as input. A further relaxation of this
condition and a generalized theory is presented in [23]. The
presented approach has been illustrated by two examples.
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