1,185 research outputs found

    AFFTC overview of orbiter-reentry flight-test results

    Get PDF
    The Air Force Flight Test Center (AFFTC) has been participating in the flight testing of the Space Shuttle since 1976. An independent assessment of the reentry and landing capabilities of the Orbiter was conducted with respect to Department of Defense (DOD) missions. This activity is on-going and reports have been published after each flight. AFFTC participation in this conference is not directly related to the DOD assessment activity, however, and the views presented by myself and other AFFTC authors discuss the technical aspects of testing and the technology emanating from these tests

    Continuous correlated beta processes

    Get PDF
    In this paper we consider a (possibly continuous) space of Bernoulli experiments. We assume that the Bernoulli distributions are correlated. All evidence data comes in the form of successful or failed experiments at different points. Current state-ofthe-art methods for expressing a distribution over a continuum of Bernoulli distributions use logistic Gaussian processes or Gaussian copula processes. However, both of these require computationally expensive matrix operations (cubic in the general case). We introduce a more intuitive approach, directly correlating beta distributions by sharing evidence between them according to a kernel function, an approach which has linear time complexity. The approach can easily be extended to multiple outcomes, giving a continuous correlated Dirichlet process, and can be used for both classification and learning the actual probabilities of the Bernoulli distributions. We show results for a number of data sets, as well as a case-study where a mixture of continuous beta processes is used as part of an automated stroke rehabilitation system.

    From patent to patient: analysing access to innovative cancer drugs.

    Get PDF
    Analysis of cancer drugs licensed through the European Medicines Agency (EMA) in 2000-2016 shows that the number of authorisations increased over that timeframe. The median number of licensed drugs each year rose from six for 2000-2008 to 13.5 for 2009-2016. Over 2000-2016, there were 64 drug authorisations for haematological, 15 for breast, and 12 for skin cancer, but none for oesophageal, brain, bladder, or uterine cancer. Only 6% of authorisations included a paediatric indication. The average time for a drug to progress from patent priority date to availability on the National Health Service (NHS) increased from 12.8 years for drugs first licensed in 2000-2008 to 14.0 years for those licensed in 2009-2016. There was evidence that the most innovative drugs were not being prioritised for EMA licensing and NICE approval

    Inertial drag and lift forces for coarse grains on rough alluvial beds measured using in-grain accelerometers

    Get PDF
    Quantifying the force regime that controls the movement of a single grain during fluvial transport has historically proven to be difficult. Inertial micro-electromechanical system (MEMS) sensors (sensor assemblies that mainly comprise micro-accelerometers and gyroscopes) can used to address this problem using a “smart pebble”: a mobile inertial measurement unit (IMU) enclosed in a stone-like assembly that can measure directly the forces on a particle during sediment transport. Previous research has demonstrated that measurements using MEMS sensors can be used to calculate the dynamics of single grains over short time periods, despite limitations in the accuracy of the MEMS sensors that have been used to date. This paper develops a theoretical framework for calculating drag and lift forces on grains based on IMU measurements. IMUs were embedded a spherical and an ellipsoidal grain and used in flume experiments in which flow was increased until the grain moved. Acceleration measurements along three orthogonal directions were then processed to calculate the threshold force for entrainment, resulting in a statistical approximation of inertial impulse thresholds for both the lift and drag components of grain inertial dynamics. The ellipsoid IMU was also deployed in a series of experiments in a steep stream (Erlenbach, Switzerland). The inertial dynamics from both sets of experiments provide direct measurement of the resultant forces on sediment particles during transport, which quantifies (a) the effect of grain shape and (b) the effect of varied-intensity hydraulic forcing on the motion of coarse sediment grains during bedload transport. Lift impulses exert a significant control on the motion of the ellipsoid across hydraulic regimes, despite the occurrence of higher-magnitude and longer-duration drag impulses. The first-order statistical generalisation of the results suggests that the kinetics of the ellipsoid are characterised by low- or no-mobility states and that the majority of mobility states are controlled by lift impulses

    Acanthaster planci invasions: Applying biosecurity practices to manage a native boom and bust coral pest in Australia

    Get PDF
    Coral reef systems are in global decline. In Australia, much of this decline has been attributable to cyclic outbreaks (every ~17 years) of the coral-feeding crown-of-thorns seastar. While a native species, when in large enough densities the seastar acts like an invasive pest. Since 2012 the Australian government has invested significantly in a targeted control program using lethal injection. While this program is effective for individual reefs, it is not a complete strategy for the entire Great Barrier Reef (~2,500 reefs). In order to find a longer-term solution to the problem, in 2015, the lead author travelled to New Zealand, the United States, and Canada under a Churchill Fellowship to understand successful aquatic integrated pest management strategies and their potential application to the Great Barrier Reef. Meetings and workshops were convened with experts who specialise in risk assessment, categorisation, and management of aquatic invasive species. The experts comprised academics, applied scientists, policy makers, and a not for profit community based invasive species council. Bioinvasion management and prioritisation of management effort using risk-based frameworks were reviewed for application to the crown-of-thorns seastar. This viewpoint is novel in its approach of applying invasive species tools and perspectives to a non-invasive, native marine pest. Early detection and rapid response is key to preventing the transition of the seastar from natural densities to outbreak densities. However given the seastar is a native species already established, when in outbreak mode a multifaceted post-border management approach is essential. Private support funding models, that bridge conservation and tourism/philanthropy have proved successful in New Zealand to supplement government funded marine reserve management – this is an approach which should be explored by Australia to help manage the seastar. Dedicated support and commitment is needed to break the issue-attention cycle. On the Great Barrier Reef, a dedicated biosecurity approach should be used to maintain the seastar at natural densities, increase the time between outbreaks, protect coral cover and increase resilience of the system

    Global ecological success of Thalassoma fishes in extreme coral reef habitats

    Get PDF
    Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world

    Macroalgae removal on coral reefs: realised ecosystem functions transcend biogeographic locations

    Get PDF
    Coral reef ecosystems are at the forefront of biodiversity loss and climate change-mediated transformations. This is expected to have profound consequences for the functioning of these ecosystems. However, assessments of ecosystem function on reefs are often spatially limited, within biogeographic realms, or rely on presumed proxies such as traits. To address these shortcomings and assess the effects of biogeography and fish presence on the critical ecosystem function of macroalgal removal, we used assays of six algal genera across three reef habitats in two biogeographically distinct locations: Little Cayman in the Caribbean and Lizard Island on the Great Barrier Reef (GBR). Patterns of fish feeding and realised ecosystem function were strikingly similar between the two geographic locations, despite a threefold difference in the local diversity of nominally herbivorous fishes, a 2.4-fold difference in the diversity of fishes feeding and differences in the biogeographic history of the two locations. In both regions, a single species dominated the function: a surgeonfish, Naso unicornis, at the GBR location and, surprisingly, a triggerfish, Melichthys niger, at the Caribbean location. Both species, especially M. niger, were relatively rare, compared to other nominally herbivorous fishes, in censuses covering more than 14,000 m(2) at each location. Our study provides novel insights into the critical function of macroalgal removal in hyperdiverse coral reef ecosystems, highlighting: (a) that function can transcend biogeographic, taxonomic and historical constraints; and (b) shortcomings in our assumptions regarding fish presence and realised ecosystem function on coral reefs

    What are the important thresholds and relationships to inform the management of COTS? Draft report, 30 June 2014

    Get PDF
    [Extract] The crown-of-thorns seastar (COTS), Acanthaster planci, is one of the main contributors to declines in coral cover on the Great Barrier Reef (GBR), and remains one of the major acute disturbances on coral reefs throughout much of the Indo-Pacific. The aim of this project is to investigate important ecological thresholds and relationships to inform the management of COTS. To do this we use a range of modelling methods as well as analyses of all available empirical data. Data from the management program removals of COTS provide near-real-time CPUE (Catch-Per-Unit-Effort) data that can be used to inform management
    • …
    corecore