70 research outputs found

    Combining irradiation and biological control against brown marmorated stink bug: are sterile eggs a suitable substrate for the egg parasitoid Trissolcus Japonicus?

    Get PDF
    The brown marmorated stink bug (BMSB), Halyomorpha halys, is a phytophagous invasive pest native to south-eastern Asia, and it is now distributed worldwide. This species is considered to be one of the most damaging insect pests in North America and in Europe. In agriculture, the predominant approach to managing BMSB is based on the use of insecticides, specifically pyrethroids and neonicotinoids. Unfortunately, the biology of the species and its facility to develop mechanisms of resistance to available pesticides has induced farmers and scientists to develop different, least-toxic, and more effective strategies of control. In a territorial area-wide approach, the use of a classical biological control program in combination with other least-toxic strategies has been given prominent consideration. Following exploratory surveys in the native range, attention has focused on Trissolcus japonicus, a small scelionid egg parasitoid wasp that is able to oviposit and complete its larval development in a single egg of H. halys. A common method for detecting egg parasitoids in the native range involves the placement of so-called 'sentinel' egg masses of the pest in the environment for a short period, which are then returned to the laboratory to determine if any of them are parasitized. Outside of the area of origin, the use of fertile sentinel eggs of the alien species may lead to the further release of the pest species; an alternative is to use sterile sentinel eggs to record the presence of new indigenous egg parasitoids or to detect the dispersal of alien species (in this case, T. japonicus) released in a new environment to control the target insect pest species. This study evaluated the performance of three types of sterile sentinel eggs as a suitable substrate for the oviposition and larval development of the egg parasitoid T. japonicus in a context of combining classical biological control with a Sterile Insect Technique (SIT) approac

    Biological control of invasive stink bugs: review of global state and future prospects

    Get PDF
    Invasive stink bugs (Hemiptera: Pentatomidae) are responsible for high economic losses to agriculture on a global scale. The most important species, dating from recent to old invasions, include Bagrada hilaris (Burmeister), Halyomorpha halys (St\ue5l), Piezodorus guildinii (Westwood), Nezara viridula (L.), and Murgantia histrionica (Hahn). Bagrada hilaris, H. halys, and N. viridula are now almost globally distributed. Biological control of these pests faces a complex set of challenges that must be addressed to maintain pest populations below the economic injury level. Several case studies of classical and conservation biological control of invasive stink bugs are reported here. The most common parasitoids in their geographical area of origin are egg parasitoids (Hymenoptera: Scelionidae, Encyrtidae, and Eupelmidae). Additionally, native parasitoids of adult stink bugs (Diptera: Tachinidae) have in some cases adapted to the novel hosts in the invaded area and native predators are known to prey on the various instars. Improving the efficacy of biocontrol agents is possible through conservation biological control techniques and exploitation of their chemical ecology. Moreover, integration of biological control with other techniques, such as behavioural manipulation of adult stink bugs and plant resistance, may be a sustainable pest control method within organic farming and integrated pest management programs. However, additional field studies are needed to verify the efficacy of these novel methods and transfer them from research to application

    Two Asian egg parasitoids of Halyomorpha halys (StĂĄl) (Hemiptera, Pentatomidae) emerge in northern Italy: Trissolcus mitsukurii (Ashmead) and Trissolcus japonicus (Ashmead) (Hymenoptera, Scelionidae)

    Get PDF
    Halyomorpha halys (StĂĄl) is a severe agricultural pest that is spreading worldwide from its original distribution in Asia. Egg parasitoids from Asia, which play a key role in the population dynamics of H. halys, are following its host along global pathways. We present the first records of Trissolcus mitsukurii in Europe, and of Trissolcus japonicus in Italy. Both discoveries were made in northern Italy, where H. halys is widely present and has reached extremely high population densities in some areas. Given the availability of their host, the distributions and populations of these exotic egg parasitoids are expected to expand, even in the absence of human intervention

    Biological controls investigated to aid management of olive fruit fly in California

    Full text link
    The widespread and rapid establishment of the olive fruit fly in California required immediate changes in integrated pest management (IPM) programs for olives. After finding that resident natural enemies did not provide adequate control, researchers began a worldwide search for parasitoids, with exploration in the Republic of South Africa, Namibia, India, China and other countries. Parasitoids were shipped to California, and most were studied in quarantine to determine the best species for release. Two parasitoid species — Psyttalia lounsburyi and Psyttalia humilis — are now being released throughout the state’s olive-growing regions, and researchers are studying their effectiveness

    Yellow Sticky Trap Catches of Parasitoids of Bemisia tabaci

    No full text

    Figures 191-193 from: Talamas EJ, Buffington ML, Hoelmer K (2017) Revision of Palearctic Trissolcus Ashmead (Hymenoptera, Scelionidae). In: Talamas EJ, Buffington ML (Eds) Advances in the Systematics of Platygastroidea. Journal of Hymenoptera Research 56: 3-185. https://doi.org/10.3897/jhr.56.10158

    No full text
    Figures 191-193 - Trissolcus tersus female (EMBT ENT 0001839) 191 head, mesosoma, anterodorsal view 192 head and mesosoma, ventrolateral view 193 head, anterior view. Scale bars in millimeters
    • …
    corecore