29 research outputs found

    Staphylococcal virulence factors : interaction with human mast cells and modulation of their expression by antibiotics

    No full text
    S. aureus est un pathogène majeur de l’Homme capable de produire une grande variété de facteurs de virulence tels que les phénol-solubles modulines alpha (PSM) et l’hémolysine delta (Hld). La transmission de S. aureus est essentiellement manu-portée mais les éléments favorisant sa dissémination dans la population restent inconnus. Les mastocytes étant connus pour libérer des médiateurs pruritogènes, nous avons suspecté leur implication dans la physiopathologie et la transmission des infections cutanées staphylococciques. Sur une lignée de mastocytes humains, l’Hld et les PSM1, montrés pour être produits in vivo, déclenchaient la libération de tels médiateurs. Chez S. aureus, la production des toxines est sous la dépendance du système de régulation globale Agr. Les souches de S. aureus appartenant au type Agr1, produisant significativement plus d’Hld et de PSM que les autres souches, ont été les plus fréquemment retrouvées au cours de l’année 2017 dans les infections cutanées staphylococciques. Ceci corrobore l’hypothèse selon laquelle une souche de S. aureus produisant des toxines capables d’interagir avec les mastocytes et induisant un prurit, diffuse plus facilement dans la population. Nous avons ensuite étudié la modulation de l’expression des PSM et d’Hld par des concentrations sub-inhibitrices d’antibiotiques. L’oxacilline induisait une inhibition de l’expression des PSM et d’Hld alors que la clindamycine entraînait plus fréquemment une induction de leur expression. Ces observations nous ont interrogé sur l’utilisation de la clindamycine considérée habituellement comme anti-toxinique et sur l’effet bénéfique ou délétère de l’effet inhibiteur de l’oxacillineS. aureus is a major human pathogen able to produce several virulence factors such as phenol-solublemodulins alpha (PSMalpha) and delta hemolysin (Hld). S. aureus is essentially spread through hand butthe elements promoting its spreading stay unsolved. Mast cells release several soluble mediatorstriggering itching behavior. We suspect the mast cell involvement in spreading of S. aureus strains andin physiopathology of staphylococcal skin infections. Upon human mast cell line, we showed thatPSMalpha1 and Hld induced the release of mediators triggering itching behavior. Moreover, these toxinswere produced in vivo during staphylococcal skin infections. Expression of staphylococcal virulencefactors is regulated by global regulatory system Agr. Interestingly, we observed that S. aureus strainsbelonging in Agr1 produced higher quantity of PSMalpha and Hld than those belonging to Agr2 and Agr3,and were more frequently responsible to skin infections during the last year. This observation supportsour hypothesis whereby a strain producing toxins able to trigger mast cell mediator inducingscratching behavior, spreads electively in the community. Thereafter, we studied modulation of PSMalphaand Hld expression by sub-inhibitory concentration of antibiotics. We reported that oxacillin inducedan inhibitory effect on PSMalpha and Hld expression, while clindamycin resulted in more frequently aninducer effect. These results are discordant with these observed with Panton-Valentine leucocidin andalpha hemolysin and interrogate on clindamycin use for its anti-toxin activity and on benefic ordeleterious effect of oxacillin inhibitory effec

    Les facteurs de virulence staphylococciques : interaction avec les mastocytes humains et modulation de leur expression par les antibiotiques

    No full text
    S. aureus is a major human pathogen able to produce several virulence factors such as phenol-solublemodulins alpha (PSMalpha) and delta hemolysin (Hld). S. aureus is essentially spread through hand butthe elements promoting its spreading stay unsolved. Mast cells release several soluble mediatorstriggering itching behavior. We suspect the mast cell involvement in spreading of S. aureus strains andin physiopathology of staphylococcal skin infections. Upon human mast cell line, we showed thatPSMalpha1 and Hld induced the release of mediators triggering itching behavior. Moreover, these toxinswere produced in vivo during staphylococcal skin infections. Expression of staphylococcal virulencefactors is regulated by global regulatory system Agr. Interestingly, we observed that S. aureus strainsbelonging in Agr1 produced higher quantity of PSMalpha and Hld than those belonging to Agr2 and Agr3,and were more frequently responsible to skin infections during the last year. This observation supportsour hypothesis whereby a strain producing toxins able to trigger mast cell mediator inducingscratching behavior, spreads electively in the community. Thereafter, we studied modulation of PSMalphaand Hld expression by sub-inhibitory concentration of antibiotics. We reported that oxacillin inducedan inhibitory effect on PSMalpha and Hld expression, while clindamycin resulted in more frequently aninducer effect. These results are discordant with these observed with Panton-Valentine leucocidin andalpha hemolysin and interrogate on clindamycin use for its anti-toxin activity and on benefic ordeleterious effect of oxacillin inhibitory effectS. aureus est un pathogène majeur de l’Homme capable de produire une grande variété de facteurs de virulence tels que les phénol-solubles modulines alpha (PSM) et l’hémolysine delta (Hld). La transmission de S. aureus est essentiellement manu-portée mais les éléments favorisant sa dissémination dans la population restent inconnus. Les mastocytes étant connus pour libérer des médiateurs pruritogènes, nous avons suspecté leur implication dans la physiopathologie et la transmission des infections cutanées staphylococciques. Sur une lignée de mastocytes humains, l’Hld et les PSM1, montrés pour être produits in vivo, déclenchaient la libération de tels médiateurs. Chez S. aureus, la production des toxines est sous la dépendance du système de régulation globale Agr. Les souches de S. aureus appartenant au type Agr1, produisant significativement plus d’Hld et de PSM que les autres souches, ont été les plus fréquemment retrouvées au cours de l’année 2017 dans les infections cutanées staphylococciques. Ceci corrobore l’hypothèse selon laquelle une souche de S. aureus produisant des toxines capables d’interagir avec les mastocytes et induisant un prurit, diffuse plus facilement dans la population. Nous avons ensuite étudié la modulation de l’expression des PSM et d’Hld par des concentrations sub-inhibitrices d’antibiotiques. L’oxacilline induisait une inhibition de l’expression des PSM et d’Hld alors que la clindamycine entraînait plus fréquemment une induction de leur expression. Ces observations nous ont interrogé sur l’utilisation de la clindamycine considérée habituellement comme anti-toxinique et sur l’effet bénéfique ou délétère de l’effet inhibiteur de l’oxacillin

    Biochemical and structural characterization of a class A β-lactamase from Nocardia cyriacigeorgica

    No full text
    International audienceNocardia are Gram-positive bacteria from the Actinobacteria phylum. Some Nocardia species can infect humans and are usually considered to be opportunist pathogens, as they often infect immunocompromised patients. Although their clinical incidence is low, many Nocardia species are now considered to be emerging pathogens. Primary sites of infection by Nocardia are the skin or the lungs, but dissemination to other body parts is very frequent. These disseminated infections are very difficult to treat and thus are tackled with multiple classes of antibiotics, in addition to the traditional treatment targeting the folate pathway. β-Lactams are often included in the regimen, but many Nocardia species present moderate or strong resistance to some members of this drug class. Genomic, microbiological and biochemical studies have reported the presence of class A β-lactamases (ABLs) in a handful of Nocardia species, but no structural investigation of Nocardia β-lactamases has yet been performed. In this study, the expression, purification and preliminary biochemical characterization of an ABL from an N. cyriacigeorgica (NCY-1) clinical strain are reported. The crystallization and the very high resolution crystal structure of NCY-1 are also described. The sequence and structural analysis of the protein demonstrate that NCY-1 belongs to the class A1 β-lactamases and show its very high conservation with ABLs from other human-pathogenic Nocardia . In addition, the presence of one molecule of citrate tightly bound in the catalytic site of the enzyme is described. This structure may provide a solid basis for future drug development to specifically target Nocardia spp. β-lactamases

    The Role of Antibiotics in Modulating Virulence in Staphylococcus aureus

    No full text
    International audienceStaphylococcus aureus is often involved in severe infections, in which the effects of bacterial virulence factors have great importance. Antistaphylococcal regimens should take into account the different effects of antibacterial agents on the expression of virulence factors and on the host's immune response. A PubMed literature search was performed to select relevant articles on the effects of antibiotics on staphylococcal toxin production and on the host immune response. Information was sorted according to the methods used for data acquisition (bacterial strains, growth models, and antibiotic concentrations) and the assays used for readout generation. The reported mechanisms underlying S. aureus virulence modulation by antibiotics were reviewed. The relevance of in vitro observations is discussed in relation to animal model data and to clinical evidence extracted from case reports and recommendations on the management of toxin-related staphylococcal diseases. Most in vitro data point to a decreased level of virulence expression upon treatment with ribosomally active antibiotics (linezolid and clindamycin), while cell wall-active antibiotics (beta-lactams) mainly increase exotoxin production. In vivo studies confirmed the suppressive effect of clindamycin and linezolid on virulence expression, supporting their utilization as a valuable management strategy to improve patient outcomes in cases of toxin-associated staphylococcal disease

    Staphylococcal Panton–Valentine Leucocidin and Gamma Haemolysin Target and Lyse Mature Bone Marrow Leucocytes

    No full text
    Staphylococcus aureus is a major human pathogen, inducing several infections ranging from the benign to the life-threatening, such as necrotising pneumonia. S. aureus is capable of producing a great variety of virulence factors, such as bicomponent pore-forming leucocidin, which take part in the physiopathology of staphylococcal infection. In necrotising pneumonia, Panton–Valentine leucocidin (PVL) induces not only lung injury and necrosis, but also leukopenia, regarded as a major factor of a poor prognosis. The aim of the present study was to evaluate the effect of bicomponent pore-forming leucocidin, PVL and gamma haemolysin on bone marrow leucocytes, to better understand the origin of leukopenia. Using multi-parameter cytometry, the expression of leucocidin receptors (C5aR, CXCR1, CXCR2, and CCR2) was assessed and toxin-induced lysis was measured for each bone marrow leucocyte population. We observed that PVL resulted in myeloid-derived cells lysis according to their maturation and their C5aR expression; it also induced monocytes lysis according to host susceptibility. Haemolysin gamma A, B, and C (HlgABC) displayed cytotoxicity to monocytes and natural killer cells, hypothetically through CXCR2 and CXCR1 receptors, respectively. Taken together, the data suggest that PVL and HlgABC can lyse bone marrow leucocytes. Nevertheless, the origin of leukopenia in severe staphylococcal infection is predominantly peripheral, since immature cells stay insensitive to leucocidins

    Clindamycin suppresses virulence expression in inducible clindamycin-resistant Staphylococcus aureus strains

    No full text
    Abstract Clindamycin is a protein synthesis inhibitory agent that has the ability to suppress the expression of virulence factors in Staphylococcus aureus. Recent guidelines recommend the use of clindamycin for the treatment of toxin-mediated infections. Clindamycin modulates virulence expression at sub-inhibitory concentrations (sub-MICs) in clindamycin-susceptible S. aureus strains but previous report shown that this effect was supressed for constitutive clindamycin resistant strains. However, no data are currently available on the impact of clindamycin at sub-MICs on the virulence of inducible clindamycin-resistant S. aureus strains. Here, we show that sub-MICs of clindamycin decrease Panton–Valentine leucocidin, toxic-shock-staphylococcal toxin (TSST-1) and alpha-haemolysin (Hla) expression in six inducible clindamycin-resistant isolates cultivated in vitro in CCY medium. These results suggest that the clindamycin anti-toxin effect is retained for inducible clindamycin-resistant S. aureus isolates; therefore, its usage should be considered within the treatment regimen of toxin related infections for inducible clindamycin-resistant S. aureus

    Development, Evaluation, and Implementation of a House-Made Targeted Next-Generation Sequencing Spoligotyping in a French Laboratory

    No full text
    Epidemiological studies investigating transmission chains of tuberculosis are undertaken worldwide to tackle its spread. CRISPR locus diversity, called spoligotyping, is a widely used genotyping assay for Mycobacterium tuberculosis complex (MTBC) characterization. Herein, we developed a house-made targeted next-generation sequencing (tNGS) spoligotyping, and compared its outputs with those of membrane-based spoligotyping. A total of 144 clinical MTBC strains were retrospectively selected to be representative of the local epidemiology. Data analysis of a training set allowed for the setting of “presence”/“absence” thresholds for each spacer to maximize the sensibility and specificity related to the membrane-based spoligotyping. The thresholds above, in which the spacer was considered present, were 50 read per millions for spacers 10 and 14, 20,000 for spacers 20, 21, and 31, and 1000 for the other spacers. The confirmation of these thresholds was performed using a validation set. The overall agreement on the training and validation sets was 97.5% and 93.8%, respectively. The discrepancies concerned six strains: Two for spacer 14, two for spacer 31, and two for spacer 32. The tNGS spoligotyping, whose thresholds were finely-tuned during a careful bioinformatics pipeline development process, appears be a technique that is reliable, inexpensive, free of handling errors, and automatable through automatic transfer into the laboratory computer system

    Whole-genome sequences of 15 strains of staphylococcus aureus subsp. aureus isolated from foodstuff and human clinical samples

    No full text
    The whole-genome sequences of 15 strains of Staphylococcus aureus (10 strains isolated from foodstuff samples in Switzerland and five from human clinical samples) were obtained by Illumina sequencing. Most strains fit within the known diversity for the species, but one (SA-120) possessed a higher G+C content and a higher number of genes than usual

    Consistency of Mycobacterium tuberculosis Complex Spoligotyping between the Membrane-Based Method and In Silico Approach

    No full text
    Whole-genome sequencing (WGS) has profoundly transformed the perspectives of tuberculosis (TB) diagnosis, providing a better discriminatory power to determine relatedness between Mycobacterium tuberculosis complex (MTBC) isolates. Previous genotyping approaches, such as spoligotyping consisting of an initial PCR step followed by reverse dot hybridization, are currently being replaced by WGS
    corecore