3,068 research outputs found

    Direct Detection of Galactic Halo Dark Matter

    Get PDF
    The Milky Way Galaxy contains a large, spherical component which is believed to harbor a substantial amount of unseen matter. Recent observations indirectly suggest that as much as half of this ``dark matter'' may be in the form of old, very cool white dwarfs, the remnants of an ancient population of stars as old as the Galaxy itself. We conducted a survey to find faint, cool white dwarfs with large space velocities, indicative of their membership in the Galaxy's spherical halo component. The survey reveals a substantial, directly observed population of old white dwarfs, too faint to be seen in previous surveys. This newly discovered population accounts for at least 2% of the halo dark matter. It provides a natural explanation for the indirect observations, and represents a direct detection of Galactic halo dark matter.Comment: 13 pages, 4 figures, 1 table. Note added after Science Express online publication: This text reflects the correction of a few typographical errors in the online version of the table. It also includes the new constraint on the calculation of d_max which accounts for the fact that the survey could not have detected stars with proper motions below 0.33 arcseconds per year. Published online at ScienceExpress www.sciencemag.org 22 March 2001; 10.1126/science.1059954; To appear in Science 27 April 200

    Monte Carlo simulation for statistical mechanics model of ion channel cooperativity in cell membranes

    Full text link
    Voltage-gated ion channels are key molecules for the generation and propagation of electrical signals in excitable cell membranes. The voltage-dependent switching of these channels between conducting and nonconducting states is a major factor in controlling the transmembrane voltage. In this study, a statistical mechanics model of these molecules has been discussed on the basis of a two-dimensional spin model. A new Hamiltonian and a new Monte Carlo simulation algorithm are introduced to simulate such a model. It was shown that the results well match the experimental data obtained from batrachotoxin-modified sodium channels in the squid giant axon using the cut-open axon technique.Comment: Paper has been revise

    Reflection Positivity and Monotonicity

    Get PDF
    We prove general reflection positivity results for both scalar fields and Dirac fields on a Riemannian manifold, and comment on applications to quantum field theory. As another application, we prove the inequality CD≤CNC_D \leq C_N between Dirichlet and Neumann covariance operators on a manifold with a reflection.Comment: 11 page

    Kinetic models of ion transport through a nanopore

    Full text link
    Kinetic equations for the stationary state distribution function of ions moving through narrow pores are solved for a number of one-dimensional models of single ion transport. Ions move through pores of length LL, under the action of a constant external field and of a concentration gradient. The interaction of single ions with the confining pore surface and with water molecules inside the pore are modelled by a Fokker-Planck term in the kinetic equation, or by uncorrelated collisions with thermalizing centres distributed along the pore. The temporary binding of ions to polar residues lining the pore is modelled by stopping traps or energy barriers. Analytic expressions for the stationary ion current through the pore are derived for several versions of the model, as functions of key physical parameters. In all cases, saturation of the current at high fields is predicted. Such simple models, for which results are analytic, may prove useful in the study of the current/voltage relations of ion channels through membranes

    Non-Markovian Stochastic Resonance: three state model of ion channel gating

    Get PDF
    Stochastic Resonance in single voltage-dependent ion channels is investigated within a three state non-Markovian modeling of the ion channel conformational dynamics. In contrast to a two-state description one assumes the presence of an additional closed state for the ion channel which mimics the manifold of voltage-independent closed subconformations (inactivated ``state''). The conformational transition into the open state occurs through a domain of voltage-dependent closed subconformations (closed ``state''). At distinct variance with a standard two-state or also three-state Markovian approach, the inactivated state is characterized by a broad, non-exponential probability distribution of corresponding residence times. The linear response to a periodic voltage signal is determined for arbitrary distributions of the channel's recovery times. Analytical results are obtained for the spectral amplification of the applied signal and the corresponding signal-to-noise ratio. Alternatively, these results are also derived by use of a corresponding two-state non-Markovian theory which is based on driven integral renewal equations [I. Goychuk and P. Hanggi, Phys. Rev. E 69, 021104 (2004)]. The non-Markovian features of stochastic resonance are studied for a power law distribution of the residence time-intervals in the inactivated state which exhibits a large variance. A comparison with the case of bi-exponentially distributed residence times possessing the same mean value, i.e. a simplest non-Markovian two-state description, is also presented

    A photometric and astrometric investigation of the brown dwarfs in Blanco 1

    Full text link
    We present the results of a photometric and astrometric study of the low mass stellar and substellar population of the young open cluster Blanco 1. We have exploited J band data, obtained recently with the Wide Field Camera (WFCAM) on the United Kingdom InfraRed Telescope (UKIRT), and 10 year old I and z band optical imaging from CFH12k and Canada France Hawaii Telescope (CFHT), to identify 44 candidate low mass stellar and substellar members, in an area of 2 sq. degrees, on the basis of their colours and proper motions. This sample includes five sources which are newly discovered. We also confirm the lowest mass candidate member of Blanco 1 unearthed so far (29MJup). We determine the cluster mass function to have a slope of alpha=+0.93, assuming it to have a power law form. This is high, but nearly consistent with previous studies of the cluster (to within the errors), and also that of its much better studied northern hemisphere analogue, the Pleiades.Comment: 8 Pages, 5 Figures, 2 Tables and 1 Appendix. Accepted for publication in MNRA

    Model atmosphere analysis of the extreme DQ white dwarf GSC2U J131147.2+292348

    Get PDF
    A new model atmosphere analysis for the peculiar DQ white dwarf discovered by Carollo et al. (2002) is presented. The effective temperature and carbon abundance have been estimated by fitting both the photometric data (UBJ,VRF,IN,JHK) and a low resolution spectrum (3500<lambda<7500 A) with a new model grid for helium-rich white dwarfs with traces of carbon (DQ stars). We estimate Teff ~ 5120 +/- 200 K and log[C/He] ~ -5.8 +/- 0.5, which make GSC2U J131147.2+292348 the coolest DQ star ever observed. This result indicates that the hypothetical transition from C2 to C2H molecules around Teff = 6000 K, which was inferred to explain the absence of DQ stars at lower temperatures, needs to be reconsidered.Comment: 4 pages, 2 figures, accepted for publication in Astronomy and Astrophysics Letter
    • …
    corecore