86 research outputs found

    Reptilian diving: highly variable dive patterns in the green turtle (Chelonia Mydas)

    Get PDF
    Diving reptiles, unlike most diving birds and mammals, return infrequently to the surface to breathe. Spending the bulk of their lives underwater, they are likely to have developed a large variety of specific behavioural patterns different from those of their warm-blooded counterparts. However, for technical reasons, underwater behaviour of these aquatic reptiles remains poorly understood. In this study green turtles Chelonia mydas nesting on Cyprus (Eastern Mediterranean) were equipped with multi-channel data loggers monitoring diving behaviour and activity (via a logger-integrated 3-D compass which served as an activity sensor) during the inter-nesting interval. Data from 2 turtles for 2 consecutive inter-nesting intervals were available for detailed dive analysis. Both turtles showed highly variable dive patterns ranging from travelling subsurface dives to specific dive types such as U- (mainly resting and foraging dives), S- (a form of energy saving swimming) and V-dives. The green turtles stayed near the coast throughout the study, dived no deeper than ca 25 m, but remained underwater for up to ca 40 min. The recordings of the activity sensor revealed high activity levels (less than 20% resting d-1) during the whole inter-nesting period which was attributed to extensive foraging. The combination of both the activity data and the dive data showed that the turtles were engaged in travelling movements for 46% of the inter-nesting time spent underwater, foraged for 34% and rested for 12% of the time. We discuss the physiological, ecological and conservation implications of these results

    Normal ultrasonographic features of loggerhead (Caretta caretta) eyes

    Get PDF
    The Loggerhead sea turtle (Caretta caretta) is widely distributed in the Mediterranean Sea but, like other sea turtles, it is considered a threatened species. Improving anatomical knowledge on normal aspects of the species is important for correct diagnosis and proper therapy and, therefore, for improving the chances of a complete recovery and a fast reintroduction into the wild for a greater number of sea turtle bycatch and other mishaps. For this reason, 15 Loggerhead turtles, with clinically healthy eyes, were submitted to ocular ultrasonographic (US) examinations. The US exam was quick, non-invasive, and simple to perform and permitted researchers to assess all the ocular features. © 2020, Croatian Natural History Museum. All rights reserved

    Unveiling the egg microbiota of the loggerhead sea turtle Caretta caretta in nesting beaches of the Mediterranean Sea

    Get PDF
    Microbes have central roles in the development and health of animals, being the introduction of specific microbial species a potential conservation strategy to protect animals from emerging diseases. Thus, insight into the microbiota of the species and their habitats is essential. In this manuscript, we report for the first time the bacterial composition of all the components (eggshells of hatched and unhatched eggs, internal content of unhatched eggs, intestinal content of hatchling and pipping sea turtles, and sand) of three nesting beaches of Caretta caretta along the Italian coasts of the Mediterranean Sea. The analysis of 26 amplicon samples was carried out using next-generation sequencing analysis, targeting V3–V4 regions of the bacterial 16S rRNA gene. Samples featured mainly Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes, whose percentages depended on the sample type. Our results showed that, although from different sampling sites, the internal content of the unhatched eggs, intestinal content of hatchling and pipping sea turtles share the microbiota, which was yet different from that of eggshells and sand of the same nesting beach. This study suggests the maternal and environmental influence alongside a protective role of eggshells in shaping the egg microbiota of Caretta caretta sea turtles

    Detection of Chlamydial {DNA} from Mediterranean Loggerhead Sea Turtles in Southern Italy

    Get PDF
    Chlamydiae are obligate intracellular bacteria that include pathogens of human and veterinary importance. Several reptiles were reported to host chlamydial agents, but pathogenicity in these animals still needs clarification. Given that only one report of chlamydiosis was described in sea turtles, and that chlamydiae might also be detected in hosts without clinical signs, the current study examined asymptomatic Mediterranean loggerhead sea turtles for the presence of chlamydial DNA. Twenty loggerhead sea turtles, rehabilitated at the Marine Turtle Research Centre (Portici, Italy), were examined collecting ocular-conjunctival, oropharyngeal and nasal swabs. Samples were processed through quantitative and conventional PCR analyses to identify Chlamydiales and Chlamydiaceae, with particular attention to C. pecorum, C. pneumoniae, C. psittaci, and C. trachomatis. Although it was not possible to determine the species of chlamydiae involved, the detection of chlamydial DNA from the collected samples suggests that these microorganisms might act as opportunistic pathogens, and underlines the role of sea turtles as potential carriers. This study highlights the presence of chlamydial agents in sea turtles, and encourages further research to fully characterize these microorganisms, in order to improve the management of the health and conservation of these endangered species, and prevent potential zoonotic implications

    Mediterranean sea turtles: Current knowledge and priorities for conservation and research

    Get PDF
    This is the final version. Available on open access from Inter Research via the DOI in this recordThe available information regarding the 2 sea turtle species breeding in the Mediterranean (loggerhead turtle Caretta caretta and green turtle Chelonia mydas) is reviewed, including biometrics and morphology, identification of breeding and foraging areas, ecology and behaviour, abundance and trends, population structure and dynamics, anthropogenic threats and conservation measures. Although a large body of knowledge has been generated, research efforts have been inconsistently allocated across geographic areas, species and topics. Significant gaps still exist, ranging from the most fundamental aspects, such as the distribution of major nesting sites and the total number of clutches laid annually in the region, to more specific topics like age at maturity, survival rates and behavioural ecology, especially for certain areas (e.g. south-eastern Mediterranean). These gaps are particularly marked for the green turtle. The recent positive trends of nest counts at some nesting sites may be the result of the cessation of past exploitation and decades of conservation measures on land, both in the form of national regulations and of continued active protection of clutches. Therefore, the current status should be considered as dependent on such ongoing conservation efforts. Mitigation of incidental catch in fisheries, the main anthropogenic threat at sea, is still in its infancy. From the analysis of the present status a comprehensive list of re search and conservation priorities is proposed.C.C. is supported by the project CTM2013-48163 of the Spanish Ministry of Economy and Competitivity. The Cyprus Wildlife Society (CWS) acknowledges the financial support of the Department of Fisheries and Marine Research of the Government to the CWS for the implementation of the Turtle Conservation Project in the period 2010−2016 and for all its assistance to the Society in previous years. J.T. is supported by project Prometeo II (2015-018) of the Generalitat Valenciana and projects MEDSEALITTER-INTERREG and INDICIT of the European Union

    Pathology and molecular analysis of ' Hapalotrema mistroides ' (Digenea: Spirorchiidae) infecting a Mediterranean loggerhead turtle ' Caretta caretta '

    Get PDF
    Turtle blood flukes belonging to the family Spirorchiidae (Digenea) represent a major threat for sea turtle health and are considered the most important parasitic cause of turtle stranding and mortality worldwide. Despite the large diversity of spirorchiid species found globally, there are only 2 records for free-ranging Mediterranean sea turtles that date back to the late 1800s involving just Hapalotrema mistroides Monticelli, 1896. This study describes the first fatal confirmed case of spirorchiidiasis in a free-ranging Mediterranean loggerhead turtle Caretta caretta (Linnaeus) and, owing to the complexities of taxonomic identification of these parasites, provides the first molecular characterization and phylogenetic analysis of H. mistroides from the Mediterranean Sea. The loggerhead turtle showed cachexia and digestive disorders associated with severe damage to the pancreas and intestinal ganglia, caused by deposition of Hapalotrema eggs forming granulomas. Massive Hapalotrema egg emboli in several tissues and organs and encephalitis were the most probable contributions to the death of the turtle. The congruence between the phylogenetic analysis of both the ITS2 and 28S rDNA resolved the Italian and USA H. mistroides as the same species, confirming the parasite identification. The case here described clearly indicates that the blood flukes should be considered in the differential diagnosis of Mediterranean sea turtle diseases

    Measuring Energy Expenditure in Sub-Adult and Hatchling Sea Turtles via Accelerometry

    Get PDF
    Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake (o2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25–44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean o2 over an hour in a green turtle from measures of ODBA and mean flipper length (R2 = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22–30°C) had only a small effect on o2. A o2-ODBA equation for the loggerhead hatchling data was also significant (R2 = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets

    Behaviour and Physiology: The Thermal Strategy of Leatherback Turtles

    Get PDF
    Background: Adult leatherback turtles (Dermochelys coriacea) exhibit thermal gradients between their bodies and the environment of $8uC in sub-polar waters and #4uC in the tropics. There has been no direct evidence for thermoregulation in leatherbacks although modelling and morphological studies have given an indication of how thermoregulation may be achieved. Methodology/Principal Findings: We show for the first time that leatherbacks are indeed capable of thermoregulation from studies on juvenile leatherbacks of 16 and 37 kg. In cold water (, 25uC), flipper stroke frequency increased, heat loss through the plastron, carapace and flippers was minimized, and a positive thermal gradient of up to 2.3uC was maintained between body and environment. In warm water (25 – 31uC), turtles were inactive and heat loss through their plastron, carapace and flippers increased. The thermal gradient was minimized (0.5uC). Using a scaling model, we estimate that a 300 kg adult leatherback is able to maintain a maximum thermal gradient of 18.2uC in cold sub-polar waters. Conclusions/Significance: In juvenile leatherbacks, heat gain is controlled behaviourally by increasing activity while heat flux is regulated physiologically, presumably by regulation of blood flow distribution. Hence, harnessing physiology and behaviour allows leatherbacks to keep warm while foraging in cold sub-polar waters and to prevent overheating in

    Identification of animal movement patterns using tri-axial magnetometry

    Get PDF
    BackgroundAccelerometers are powerful sensors in many bio-logging devices, and are increasingly allowing researchers to investigate the performance, behaviour, energy expenditure and even state, of free-living animals. Another sensor commonly used in animal-attached loggers is the magnetometer, which has been primarily used in dead-reckoning or inertial measurement tags, but little outside that. We examine the potential of magnetometers for helping elucidate the behaviour of animals in a manner analogous to, but very different from, accelerometers. The particular responses of magnetometers to movement means that there are instances when they can resolve behaviours that are not easily perceived using accelerometers.MethodsWe calibrated the tri-axial magnetometer to rotations in each axis of movement and constructed 3-dimensional plots to inspect these stylised movements. Using the tri-axial data of Daily Diary tags, attached to individuals of number of animal species as they perform different behaviours, we used these 3-d plots to develop a framework with which tri-axial magnetometry data can be examined and introduce metrics that should help quantify movement and behaviour.ResultsTri-axial magnetometry data reveal patterns in movement at various scales of rotation that are not always evident in acceleration data. Some of these patterns may be obscure until visualised in 3D space as tri-axial spherical plots (m-spheres). A tag-fitted animal that rotates in heading while adopting a constant body attitude produces a ring of data around the pole of the m-sphere that we define as its Normal Operational Plane (NOP). Data that do not lie on this ring are created by postural rotations of the animal as it pitches and/or rolls. Consequently, stereotyped behaviours appear as specific trajectories on the sphere (m-prints), reflecting conserved sequences of postural changes (and/or angular velocities), which result from the precise relationship between body attitude and heading. This novel approach shows promise for helping researchers to identify and quantify behaviours in terms of animal body posture, including heading.ConclusionMagnetometer-based techniques and metrics can enhance our capacity to identify and examine animal behaviour, either as a technique used alone, or one that is complementary to tri-axial accelerometry
    corecore