1,019 research outputs found

    Energy Density of Non-Minimally Coupled Scalar Field Cosmologies

    Get PDF
    Scalar fields coupled to gravity via ξRΦ2\xi R {\Phi}^2 in arbitrary Friedmann-Robertson-Walker backgrounds can be represented by an effective flat space field theory. We derive an expression for the scalar energy density where the effective scalar mass becomes an explicit function of ξ\xi and the scale factor. The scalar quartic self-coupling gets shifted and can vanish for a particular choice of ξ\xi. Gravitationally induced symmetry breaking and de-stabilization are possible in this theory.Comment: 18 pages in standard Late

    Size Gap for Zero Temperature Black Holes in Semiclassical Gravity

    Get PDF
    We show that a gap exists in the allowed sizes of all zero temperature static spherically symmetric black holes in semiclassical gravity when only conformally invariant fields are present. The result holds for both charged and uncharged black holes. By size we mean the proper area of the event horizon. The range of sizes that do not occur depends on the numbers and types of quantized fields that are present. We also derive some general properties that both zero and nonzero temperature black holes have in all classical and semiclassical metric theories of gravity.Comment: 4 pages, ReVTeX, no figure

    Vibrations and fractional vibrations of rods, plates and Fresnel pseudo-processes

    Full text link
    Different initial and boundary value problems for the equation of vibrations of rods (also called Fresnel equation) are solved by exploiting the connection with Brownian motion and the heat equation. The analysis of the fractional version (of order ν\nu) of the Fresnel equation is also performed and, in detail, some specific cases, like ν=1/2\nu=1/2, 1/3, 2/3, are analyzed. By means of the fundamental solution of the Fresnel equation, a pseudo-process F(t)F(t), t>0t>0 with real sign-varying density is constructed and some of its properties examined. The equation of vibrations of plates is considered and the case of circular vibrating disks CRC_R is investigated by applying the methods of planar orthogonally reflecting Brownian motion within CRC_R. The composition of F with reflecting Brownian motion BB yields the law of biquadratic heat equation while the composition of FF with the first passage time TtT_t of BB produces a genuine probability law strictly connected with the Cauchy process.Comment: 33 pages,8 figure

    Semiclassical effects in black hole interiors

    Get PDF
    First-order semiclassical perturbations to the Schwarzschild black hole geometry are studied within the black hole interior. The source of the perturbations is taken to be the vacuum stress-energy of quantized scalar, spinor, and vector fields, evaluated using analytic approximations developed by Page and others (for massless fields) and the DeWitt-Schwinger approximation (for massive fields). Viewing the interior as an anisotropic collapsing cosmology, we find that minimally or conformally coupled scalar fields, and spinor fields, decrease the anisotropy as the singularity is approached, while vector fields increase the anisotropy. In addition, we find that massless fields of all spins, and massive vector fields, strengthen the singularity, while massive scalar and spinor fields tend to slow the growth of curvature.Comment: 29 pages, ReVTeX; 4 ps figure

    Use of H19 Gene Regulatory Sequences in DNA-Based Therapy for Pancreatic Cancer

    Get PDF
    Pancreatic cancer is the eighth most common cause of death from cancer in the world, for which palliative treatments are not effective and frequently accompanied by severe side effects. We propose a DNA-based therapy for pancreatic cancer using a nonviral vector, expressing the diphtheria toxin A chain under the control of the H19 gene regulatory sequences. The H19 gene is an oncofetal RNA expressed during embryo development and in several types of cancer. We tested the expression of H19 gene in patients, and found that 65% of human pancreatic tumors analyzed showed moderated to strong expression of the gene. In vitro experiments showed that the vector was effective in reducing Luciferase protein activity on pancreatic carcinoma cell lines. In vivo experiment results revealed tumor growth arrest in different animal models for pancreatic cancer. Differences in tumor size between control and treated groups reached a 75% in the heterotopic model (P = .037) and 50% in the orthotopic model (P = .007). In addition, no visible metastases were found in the treated group of the orthotopic model. These results indicate that the treatment with the vector DTA-H19 might be a viable new therapeutic option for patients with unresectable pancreatic cancer

    On the suitability of resampling techniques for the class imbalance problem in credit scoring

    Get PDF
    In real-life credit scoring applications, the case in which the class of defaulters is under-represented in comparison with the class of non-defaulters is a very common situation, but it has still received little attention. The present paper investigates the suitability and performance of several resampling techniques when applied in conjunction with statistical and artificial intelligence prediction models over five real-world credit data sets, which have artificially been modified to derive different imbalance ratios (proportion of defaulters and non-defaulters examples). Experimental results demonstrate that the use of resampling methods consistently improves the performance given by the original imbalanced data. Besides, it is also important to note that in general, over-sampling techniques perform better than any under-sampling approach.This work has partially been supported by the Spanish Ministry of Education and Science under grant TIN2009– 14205 and the Generalitat Valenciana under grant PROMETEO/2010/ 028

    A consistent picture for large penguins in D -> pi+ pi-, K+ K-

    Full text link
    A long-standing puzzle in charm physics is the large difference between the D0 -> K+ K- and D0 -> pi+ pi- decay rates. Recently, the LHCb and CDF collaborations reported a surprisingly large difference between the direct CP asymmetries, Delta A_CP, in these two modes. We show that the two puzzles are naturally related in the Standard Model via s- and d-quark "penguin contractions". Their sum gives rise to Delta A_CP, while their difference contributes to the two branching ratios with opposite sign. Assuming nominal SU(3) breaking, a U-spin fit to the D0 -> K+ pi-, pi+ K-, pi+ pi-, K+ K- decay rates yields large penguin contractions that naturally explain Delta A_CP. Expectations for the individual CP asymmetries are also discussed.Comment: 24 pages, 8 figure

    A New Era in the Quest for Dark Matter

    Full text link
    There is a growing sense of `crisis' in the dark matter community, due to the absence of evidence for the most popular candidates such as weakly interacting massive particles, axions, and sterile neutrinos, despite the enormous effort that has gone into searching for these particles. Here, we discuss what we have learned about the nature of dark matter from past experiments, and the implications for planned dark matter searches in the next decade. We argue that diversifying the experimental effort, incorporating astronomical surveys and gravitational wave observations, is our best hope to make progress on the dark matter problem.Comment: Published in Nature, online on 04 Oct 2018. 13 pages, 1 figur

    Computation of significance scores of unweighted Gene Set Enrichment Analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene Set Enrichment Analysis (GSEA) is a computational method for the statistical evaluation of sorted lists of genes or proteins. Originally GSEA was developed for interpreting microarray gene expression data, but it can be applied to any sorted list of genes. Given the gene list and an arbitrary biological category, GSEA evaluates whether the genes of the considered category are randomly distributed or accumulated on top or bottom of the list. Usually, significance scores (p-values) of GSEA are computed by nonparametric permutation tests, a time consuming procedure that yields only estimates of the p-values.</p> <p>Results</p> <p>We present a novel dynamic programming algorithm for calculating exact significance values of unweighted Gene Set Enrichment Analyses. Our algorithm avoids typical problems of nonparametric permutation tests, as varying findings in different runs caused by the random sampling procedure. Another advantage of the presented dynamic programming algorithm is its runtime and memory efficiency. To test our algorithm, we applied it not only to simulated data sets, but additionally evaluated expression profiles of squamous cell lung cancer tissue and autologous unaffected tissue.</p
    • …
    corecore