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Semiclassical effects in black hole interiors
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First-order semiclassical perturbations to the Schwarzschild black hole geometry are studied within the black
hole interior. The source of the perturbations is taken to be the vacuum stress-energy of quantized scalar,
spinor, and vector fields, evaluated using analytic approximations developed by Page anffatheassless
fields) and the DeWitt-Schwinger approximatigfor massive fields Viewing the interior as an anisotropic
collapsing cosmology, we find that minimally or conformally coupled scalar fields, and spinor fields, decrease
the anisotropy as the singularity is approached, while vector fields increase the anisotropy. In addition, we find
that for massless fields of all spins, the massive conformally coupled scalar field, and massive vector fields, the
metric perturbations initially strengthen the singularity, while for minimally coupled massive scalar and spinor
fields the metric perturbations tend to initially slow the growth of curvati86556-282197)06118-3

PACS numbg(s): 04.70.Dy, 04.60.Gw, 04.62v

[. INTRODUCTION possibility is that quantum effects could cause the evapora-
tion process to cease, leaving a zero temperature black hole
The application of quantum field theory to curved spaceremnant. If the remnant has an event horizon the information
has resulted in a large array of interesting and importantvould very likely be trapped inside the black hole. Since the
results. These include black hole evaporafibhand its im-  temperature of a black hole is determined by the surface
plications for black hole thermodynamifg|, the dissipation gravity at its horizon and since the evaporation process
of anisotropy by particle production in cosmological space-causes the horizon to be at points which were previously in
times[3—-11], and the removal of cosmological singularities the (apparent interior, it is clear that the geometry of the
by vacuum polarization effecfsl2—16. One of the places interior is likely to influence the evaporation process as it
for which quantum effects have been studied the least is thprogresses.
interior of a black hole. One might think that such studies are One interesting quantum effect that seems likely to occur
not interesting because no observer from the exterior regioimside the horizon of a black hole is the dissipation of anisot-
can probe the interior region unless they choose to fall intoopy and possibly inhomogeneity due to particle production.
the hole. However the existence of black hole evaporatiomhis is because the interior of such a black hole can be
makes it quite possible to eventually learn about quantumhought of as an anisotropic and possibly inhomogeneous
effects in the interior of a black hofeThis is because as a cosmology. For example the interior of a Schwarzschild
black hole evaporates more and more of its interior is exblack hole can be thought of as a homogeneous, anisotropic
posed. Thus not only can quantum effects in the interior of @osmology of the Kantowski-Sachs fam{l§7]. It has been
black hole eventually be detected, they may have a signifiwell established that particle production dissipates anisot-
cant influence on the evaporation process. ropy in Bianchi type | spacetimg8—11]. If the process of
Quantum effects in the interior may in fact have a directanisotropy dissipation occurs it will certainly alter the geom-
bearing on two of the most fundamental outstanding issuestry in the interior of a black hole.
relating to the quantum mechanics of black holes. One of For these reasons it is interesting to examine quantum
these is the question of what happens during the late stagesffects in the interior of a black hole. To do so for either the
of black hole evaporation, that is, what is the end point of theinterior or exterior of an evaporating black hole would be an
evaporation process? The other is the question of what hagnormously difficult task at present due to problems that one
pens to the information about how the black hole formedwould encounter in computing the stress-energy tensors for
There are at least two ways in which quantum effects in thequantized fields in the relevant spacetime. However, comput-
interior could affect the answers to these questions. One igg the stress-energy tensors for these fields in the case of a
that if quantum effects remove the singularity predicted byspherically symmetric black hole in thermal equilibrium with
general relativity then it is very likely that the evolution will radiation in a cavity, i.e., with the fields in the Hartle-
be unitary and information will not be destroyed. A secondHawking state, is a much more tractable problem. The reason
is that there are then three Killing vector fields in the space-
time, which makes the mode equations separable.

*Electronic address: billh@orion.physics.montana.edu. For a black hole in equilibrium with fields in the Hartle-
"Electronic address: shane@physics.montana.edu. Hawking state, analytical approximations for the stress-
*Electronic address: paul@planck.wfu.edu. energy tensors of various types of quantized fields have been

!By interior we mean here the region inside the apparent horizonobtained. The derivations of most of these approximations
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have been for the exterior region, but, as is discussed lateThe metric given by Eq(3) is clearly an anisotropic homo-
they all can easily be extended to the interior region. Thesgeneous cosmology. The vector fieltht is, in the interior,
approximations include those of Page, Brown, and Ottewillone of the spacelike Killing vector fieldglong with those
[18-2Q for conformally invariant fields in Schwarzschild on the two-sphepewhich guarantee spatial homogeneity.
spacetime, that of Frolov and Zel'nik¢g21] for conformally =~ The spatial coordinate here runs from- to +, while T
invariant fields in a general static spacetime, that of Anderruns from 2l down to zero at the curvature singularity in
son, Hiscock, and SamudR2] for massless arbitrarily the black hole interior.
coupled scalar fields in a general static spherically symmetric The Schwarzschild manifold contains both an anisotropic
spacetime, and the DeWitt-Schwinger approximation forexpanding universe, the “white hole” portion of the ex-
massive fields which was derived by Frolov and Zel'nikovtended geometry, and an anisotropic collapsing universe, the
[23,24 for Kerr spacetime, by Anderson, Hiscock, and Sam-black hole interior. In this paper we shall base our discussion
uel [22] for a scalar field in a general static spherically sym-on the black hole interior portion of the geometry, but all
metric spacetime and most recently by Herman and Hiscockonclusions may be restated in terms of the expanding white
[25] for an arbitrary spacetime. hole geometry due to the time reversal symmetry of both the
In this paper the various approximations mentioned abové&chwarzschild geometry and the Hartle-Hawking state we
are used to investigate quantum effects in the interior of &hall use to perturb it. However, the boundary conditions for
Schwarzschild black hole when the fields are in the Hartlethe fields in the two cases are very different. In the black
Hawking state. The resulting semiclassical backreactiomole case they are “initial” conditions, while in the white
equations are linearized about the classical geometry aritble case they are “final” conditions for the interior region.
their solutions are found. The questions of whether backre- While it is conventional to write homogeneous cosmo-
action effects tend to isotropize the spacetime and whethdogical metrics in terms of a proper time coordinate, i.e.,
they tend to “soften” the geometry as the singularity is ap-

proached are addressed. Although the questions of whether _ dT 4
the anisotropy is completely dissipated or whether the singu- ( 2M 2 )
larity is removed cannot be answered by examining linear _ -

perturbations, the results do provide insight into these issues.

In Sec. Il the interior geometry of a Schwarzschild blacki, the present case the spatial metric components cannot be
hole is reviewed and in Sec. Il the various analytical ap-expressed in closed algebraic form in terms of such a coor-
proximations are reviewed and discussed. Solutions to thgjnate. Upon carrying out the integral in E@), one finds
linearized backreaction equations which are derived using,at the range of the coordinafefrom 2M down to O cor-
these approximations are displayed in Sec. IV. In Sec. V th‘?esponds to an interval of proper time equakith.
dissipatipn of anisotropy is computed and in Sec. VI the The spacetime described by the metric of E), viewed
change in the curvature is computed. The results are summgg 4 cosmological model, is an anisotropic but homogeneous

rized and discussed in Sec. VII. spacetime in whiclas T proceeds from Bl down to zerd
two spatial dimensions are collapsing while one is expand-
Il. SCHWARZSCHILD BLACK HOLE INTERIOR ing. The interior Schwarzschild cosmology is a special case

of a type | Kantowski-Sachs modgl7].

Since the Schwarzschild metric is a vacuum solution,
1 there is no naturally defined four-velocity of cosmological
1_ﬂ) dr2+r2dQ2, (1) ~matter;” however, to explore the properties of the solution

as an anisotropic cosmology, it is helpful to define a set of

fiducial geodesic observers with four-velocities given by
whered? is the metric of the two-sphere. The coordinate

runs from O toee, andt from —o to +o. We are thus N

considering the complete Schwarzschild manifold, as is ap- u

propriate with the Hartle-Hawking vacuum state. The black

hole interior is the region in which€r<2M. In the inte- These observers travel along world lines withé, and ¢

rior, the vector fields/ r is timelike and the vector field/dt  constant. In terms of the conserved quantities normally used

is spacelike; hence, the coordindtés a spatial coordinate, to describe geodesics in the exterior Schwarzschild metric,

while r is a time coordinate. these observers have zero angular momentum and zero en-
The nature of the interior is more easily visualized if newergy at infinity.

coordinate names are adopted to reflect the physical nature of The proper volume of a cube defined by a set of fiducial

the coordinates in the region of interest. Defining new coorobservers at the corners, separated by coordinate distances

dinates by setting Ax, A@, andA ¢ is given by

The Schwarzschild black hole is described by the metric

2M
ds?= —<1— T dt?+

2M 1/2
(T—l) ,o,o,o). (5)

T=r, x=t, 2) 12 )
the metric takes the form

Since the fiducial observers have four-velocities given by Eq.
(5), the quantitie\x, A #, andA ¢ are constant. The volume

goes to zero at botli=0 andT=2M.

2M -1
——1| dT*+

ds?’=— T

dx?+T2dQ2. (3)

2™
T
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Near the singularity at =0, the Schwarzschild metric of Howard and Candelas is identical to the PBO approximation
Eq. (3) may be put into a form which is locally asymptotic to for the conformal scalar field's stress-energy in Schwarzs-

a Kasner universe. Let coordinatgsand z be defined as child spacetime; further, their numerical results show that the
functions of and locally in the neighborhood of a point approximation is quite accurate for all valuesrotiown to

(69, b0o) by the horizon. In the case of the vector field, the analytic ex-
_ pression derived by Jensen and Ottewill is equal to the PBO
y=2M(6—6p), z=2Msin(6p)(d— o). (7)  approximation for a conformal vector field plus a traceless

. . term proportional tor ~#; the resulting expression yields a
While these coordinates cannot be extended to cover th ood match to the numerical results for the vector fii.

two-sphere they are perfectly adequate to describe the expal he analytic approximation developed by Anderson, His-
sion and contraction of the cosmology in a local neighbor- '

hood. Near the singularity, the Schwarzschild metric the cock, and Samuel reduces to the FZ approximation when

takes the form of a Kasner universe with exoon mr}estricted to conformal coupling; it has generally been shown
;_es 1/36p O_p _02/3_ ashe erse EXPONEN'Ry pe valid for arbitrary curvature coupling when compared
1= r P27 M3 .

to numerical results in the Reissner-Nordetr@jeometry
4/3 (which, of course, includes Schwarzschild geometry as a spe-
(dy?>+dz%), (8) cial case.

Each of these expressions has been derived in the exterior
where ro=4M/3 and7=(2T3/M)Y%3. In a similar fashion, region pf t_he bla_ck h(_)le. There is good reason to believe they
the metric may be approximated by a flat Kasnerare valid in t_he interior also. The components .of the curva-
(p1=1, p,=ps=0) solution nearT=2M. There the cos- ture tensors in an orthonormal frame are anaIyUc f.unctllons of
mological proper time has the asymptotic form ! N€&r thg event.horlzon. Each of the gpprommatlons is also
7=4M(1—T/2M)*2 and the asymptotic form of the metric an analytic function of the radial coordinatenear the event

—2/3

ds?=—d7*+ dx?+

70

70

is horizon. Thus the analytic extension of these approximations
into the interior region is trivial to obtain. Further Candelas
72 and Jensefi31] have numerically compute$?) in the in-
ds’=—dr*+ 16—M2dX2+(dy2+dzz), (9 terior of a Schwarzschild black hole when the field is in the

Hartle-Hawking state. They find that Page’s approximation
as 7—0. The singular behavior of Eq9) is of course only [18] for (#?) arises in a natural way from the calculation of
apparent; the surface=0 is actually the black hole event the renormalized Feynman Green function in the interior re-

horizon. gion and that it is a good approximation in much of the
interior region.
lIl. APPROXIMATE STRESS-ENERGY TENSORS In this paper the Anderson, Hiscock, Samuel approximate
analytic stress-energy tensor will be used to describe the ef-
A. Massless fields fects of quantized massless scalar fields with arbitrary curva-

To calculate the linearized metric perturbations to thefur® coupling in the Schwarzschild interior. The Jensen-
Schwarzschild geometry resulting from the presence ofPttewill analytic approximation will bg used for the stress-
quantized fields, it is necessary to know the values of th&nergy tensor of massless vector fields. Massless spinor
stress-energy tensors of those fields. Calculating the strestelds will be treated using the PBO approximation. It should
energy tensor for a quantized field on a black hole backbPe keptin mind, however., that the spinor field expression has
ground spacetime is an arduous task, which has been carri@@t Yt been tested against an accurate numerical computa-
to completion only for a few cases. Howard and Candeladion to establish its validity. _
have computed the stress-energy of a conformally invariant |N€ components of the stress-energy tensor in Schwarzs-
scalar field in the Schwarzschild geomef86,27]. Jensen child coordinates may then be expressed as follows:
and Ottewill have computed the vacuum stress-energy of a _ .
massless vector field in the Schwarzschild geomg2g]. (Tun)=Cpy+(£-1/6D (10

More recently Anderson, Hiscock, and Samuel have develyhereC,, represents the conformally invariant contribution
oped a method for computing the vacuum stress-energy forg@ the vacuum stress-energy from all the fields, @
general(arbitrary curvature coupling and masscalar field  yepresents the nonconformal contribution due to the scalar

in an arbitrary static spherical spacetime and have appliefle|ds, which we allow to have arbitrary curvature coupling.
In each of these studies, an analytic expressior Toy,)

has been developed as a consequence of the procedure used . €
to compute the exact values foT ,,). These approximate CT:W
expressions are generated by using a fourth order WKB ex-
pansion for the field modes in the unrenormalized expression

for (T,,) and then subtracting off the DeWitt-Schwinger
countertermd30] to renormalize the stress-tensor. The re-
sulting analytic expressions are closely related to approxiwhere
mate expressions for the vacuum stress-energy derived by
Page, Brown, and OttewillPBO) [18—2( and Frolov and
Zel'nikov (FZ) [21]. The analytic approximation found by

uvo

2M 2

T

1+2 +3 M
T

a +ag

T

2M)3

4
+ag

5
+ag

2M

T

2M

T

Tay T

M 6
], (11)

a=h(0)+%h(1/2)+h(1), (12
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13
a3=4h(0)— 5-h(1/2 = 76n(1), (13
35
a4=5h(0)— 5-h(1/2)+295h(1), (14)
9
a5=6h(0)—Zh(1/2)—54h(1), (15
15
25=15n(0) + 5-h(1/2) +285(1), (16)
. 3e 2 2M\ 3
CX_W —all+2 ?)4-3(7 +4 T)
2M\4 2M\° 2M\ 68
where
45
b4=—5h(0)—Eh(1/2)+105h(1), (18
31
b5=—6h(0)—zh(1/2)—26h(1), (19
161
b6=33h(0)+?h(1/2)+83h(1), (20
and
. € 2M 2Mm\? 2m\ 3
Cﬁzcﬁzm{a 1+2 _ +3 T +C3 T)
2M\*4 2M\° 2M\©
+C4(T +C5(? +C6(?> , (21
17
C3=4h(0)+ —-h(1/2)+44n(1), (22
85
c,=5h(0)+ gh(l/Z)—305h(1), (23
51
c;=6h(0)+ Zh(1/2) +66h(1), (24
87
Ce=—9h(0)+ 5-h(1/2 —57%h(1). (25)

The constantse and \ are defined by e=#/M?,
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YA el P L PO
= OO ) |3 T
32M2 26
+ -/ (26)
Dx=180h(0 < 2|V|41 22M 52M 2
VL N e e i I
@7)
DI=1200(0) | 2 31+2 M) 52 i
o=1200(0) 2| - T3
122'\/|3 28
T 8

These expressions exhibit a variety of interesting behavior
in the black hole interior. The energy densips —(T1), is
negative at the horizon for the conformally coupled scalar
field and the vector field; it is positive there, however, for the
spinor field and for any scalar field witfr>1/4. The energy
density diverges negatively as the singularity is approached
for all conformal fields; however, the density diverges posi-
tively for scalar fields withé<5/36, which includes the mini-
mally coupled scalar field. There is a particular surface,
T=3M/2, on which the energy density of the scalar field is
independent of the curvature coupling.

The spatial stress in thedirection,(T), is positive at the
horizon for all scalar fields withé<<4/15, which includes
both the minimally coupled and conformally coupled cases,
and for the conformal vector field. The stress is negative at
the horizon for the spinor field. This stress diverges in a
positive fashion as the singularity is approached for all con-
formal fields and also for the minimally coupled scalar field.

The tangential stres§T %), is everywhere positive in the
domain of interest for the minimally coupled scalar field and
the spinor field; it is also everywhere negative for the vector
field. The conformal scalar field had@’) positive at the
horizon, but diverging negatively as the singularity is ap-
proached.

B. Massive fields

The technique of choice for computing an approximate
renormalized stress-energy tensor in the massive case is the
DeWitt-Schwinger approximation fqfT,). This is obtained
by performing the DeWitt-Schwinger expansion of the
stress-energy tensor, in inverse square powers of the field
massm, and then subtracting off the first, divergent terms of
the expansiof32]. The remaining terms of the asymptotic
series may be used as an analytic approximatiofi{g. In
this paper, approximations for the stress-energy tensor of
massive quantized fields have been derived from the previ-

A= (45x21) 72, andh(s) is the number of helicity states in, ous work of Frolov and Zel'nikov[24], who used the
respectively, the scalar, spinor, and vector fields present. EXReWitt-Schwinger approximation to find the renormalized
plicitly, h(0) simply counts the number of scalar fields stress-energy for massive fields in the Kerr spacetime. For

presenth(1/2) is equal to 2Aor 4) for each two-(or four-)

the massive scalar field in the Schwarzschild limit, Frolov

component spinor field presemt(1) is equal to 2 times the and Zel'nikov’'s Kerr results have been found to reduce to the
number of vector fields present. The nonconformal contribustress-energy obtained by other renormalization methods

tion to the scalar field stress-energy is given by

[23].
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By taking the zero angular momentum limia--0) of The DeWitt-Schwinger approximation for the stress-
the Kerr results, the DeWitt-Schwinger approximation to theenergy will be valid for sufficiently massive fields, when the
stress-energy in Schwarzschild may be found for an arbitrar¢ompton wavelength of the field;=#/m, is much smaller
collection of scalar, spinor, and vector fields. The resultingthan the horizon radius of the black hole.
stress-energy tensor may again be decomposed into the con-As was the case with the massless fields, these expres-
tributions of the conformally coupled field€!, and the sions show interesting behavior in the interior of the black
contribution of a possibly nonconformal scalar fie@”, hole. At the horizon, the energy densips —(T7), is nega-
according to Eg(10). The components of the approximate tive for all scalar fields witié<2/9, which includes the con-
stress-energy tensor for conformally coupled massive fieldformally and minimally coupled scalar fields. The spinor

are field has negative energy density at the horizon as well,
) whereas the vector field has positive energy density. As the
cT- M 15— ll(ﬂ i+ 36— 28(ﬂ 1 singularity is approached the energy density diverges in a
T 14407°T8 T /|m3 T ) |mé, positive fashion for scalar fields witE<47/216, which
again includes both the conformally and minimally coupled
+| — o9+ 75 ﬂ” 1 29) scalar fields. The energy density of the spinor field has a
T Ef ' similar positive divergence, while the vector field energy
density diverges negatively. Just as in the massless field case,
. M2 2M\T 1 the energy density of the scalar field is independent of the
CX_lOOSOrrZTBH 285+ 313( T ng curvature coupling on the surfade= 3M/%. _ N
The spatial stress in the-direction,(T5), is positive on
2M\ | 1 the horizon for all scalar fields witl§<2/9, including the
+] —540+ 596< T) }EZ_ minimal and conformally coupled cases. As the singularity is
V2 approached, the stress shows a positive divergence for all
2M\ | 1 scalar fields withit<<1237/5544. For the spinor field, the spa-
+]1665- 183% T”Hzi] (30 tial stress is also positive on the horizon and diverges in a

positive direction as the singularity is approached. The vec-

M2 oM\ 11 tor field has negative stress in both limits.
Ch= 1080072T H—315+ 367( —) }—2 The tangential stres§T %), is positive for all scalar fields
Mo with £<55/252, including the conformal scalar field. Again

oM\ 1 in this case, the stress for the spinor field is positive on the

+| — 756+ 884( T) }—2 horizon and as the singularity is approached, and the vector
M2 field has negative stress in both cases.
+|2079-242 ZM) ! 31
T mi ' (3Y) IV. SEMICLASSICAL BLACK HOLE INTERIORS

wheremo, my,, andm, are the “effective masses” of the The linearized perturbations to the Schwarzschild metric

scalar, Dirac spinor, and vector fields present. If there is n€sulting from the stress-energy of a quantized figlthin

field present for a particular spin, then its effective mass i¢he various analytic approximation schemes discussed in the
set equal to infinity. If there are multiple fields with a given Previous sectionhave been described for the massless con-
spin, possibly with differing massés.g., the massive spin- formal scalar field by York33], for the massless vector fl_eld
1/2 fields in nature, representing the differing leptons and?Y Hochberg and Kepha[B4], and for the massless spinor

quarks, then the effective mass is calculated according to field by Hochberg, Kephart, and Yoifl85]. The perturbed
geometry associated with a quantized massless scalar field

1 noq with arbitrary curvature coupling has been analyzed by
—2=2 —, (320  Anderson, Hiscock, Whitesell, and YofB6]. In these pre-
Mgt =1 M vious calculations it was most convenient to describe the

) o metric perturbations in ingoing Eddington-Finkelstein coor-
where the sum on the right-hand side is taken overrthe ginates, ¢,r, 6, ¢).

fields of given spin present. . The study of the interior semiclassical effects proceeds
The nonconformal scalar stress-energy contribution ignost naturally however in terms of the original Schwarzs-

given by child coordinategalbeit with new names in the interjorin
M2 oM those coordinates, the perturbed metric may be written in the
L — - form
D= 20mmzre] 43T ” 33
' 2M -1 2M
M2 2 dszz—(——l) [1+en(T)]dT2+ ——1)
DX=———— 10— 11 — 4 7
= 2072mzTe, 1° ( T ” (34 T T
X[1+ eo(T)]dx2+ T2dQ2. (36

2 M
D0=—[6—7(—”. (35)
’ 10m°mgT® T The Einstein equations, to first orderdnthen have the form
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d _ 8aTXTy)
aT EM-T)yl=———, (37

d 8uTHTI
do M) » @9
daT e2M—-T) 2M-T

A. Massless fields

Integrating Egs.(37),(38) using the approximate stress-
energy tensor for a collection of massless quantized field

given in Egs.(11)—(28), one obtains

Kn=A T24 1211 Till Gl A
7=Al\am) THam) T am) )T
2M 2M |2 2M\3
+A; o +A, - +Az _ (39
Ko=A Cra( D) g 3T (MY g
7=Alam| "elam) T am=T/ " T )| TP
B2|\/| BzMZBzM3 20
R ALC N i 40

whereK=3840r, and the coefficientd,, B; are given by

o BN(0)+7h(1/2)+8h(1)

24 (1)

AO:%[8(109— 360¢)h(0)+43n(1/2) +375n(1)],
(42)

A1:2i4[8(1— 60£)h(0) +67n(1/2)—287(1)], (43)
Azzé[s(—11+30§)h(0)—17h(1/2)—88h(1)], (44)

A3=%[8( —83+300¢)h(0) — 161n(1/2) —664n(1)],
(45

1

Bo=5,[8(155- 720¢)h(0) +365n(1/2) ~ 565(1)] + ko,

(46)

Bl:%[S(—27+ 100)h(0) — 89h(1/2) + 10641(1)],
47

Bzzliz[g( — 23+ 120¢)h(0) — 41n(1/2) + 296n(1)],
(48)

and

BS:%[S(—5+36§)h(0)+h(1/2)+ 152h(1)]. (49
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The form of Eq.(46) has been chosen so that the integra-
tion constant ino is expressed in terms of the integration
constant,k,, which has appeared in previous papdi3—

36]. The integration constant which is associated withas
been absorbed via renormalization intb; the constanM
which appears in these equations is thus to be interpreted as
the “dressed” mass of the black hole.

The semiclassical metric of E¢36) is valid only when
the perturbationse 7 and eo, are small compared to unity.
The perturbations are small at the horizdrs; 2M, for black
Role masses greater than or equal to the Planck fnesall
e=hIM?2=M2/M?). Of course, the perturbations can al-
ways be made large by taking the lafgdimit, whereN is
the number of quantized fields present. For reasonable num-
bers of fields, and black hole masses greater than the Planck
mass, it is possible to approach the singularityf &0 fairly
closely. As an example, if we takk(0)=0, h(1/2)=6,
h(1)=2, representing three massless neutrino fields and one
massless vector field, and a black hole massvicf Mp,
then the perturbations reach a strength of 1@t about
T=M; for a solar mass black hole, however, the perturbation
does not reach this strength untiT~3x10 %!
cm=2x1025M.

B. Massive fields

Integrating Eqs(37),(38) using the approximate stress-
energy tensor for a collection of massive quantized fields
given in Egs.(29)—(35), one obtains

Ko 2M 2M\2 (2M\® [2M\* [2M)\°®
n= T+T +T +T +T
E—2M6 50
Bl (50
Ko kBl _5 2M 2M\2 [2Mm)\3
o=Kg— —+T+? +T
2M\4 [2M)\° I:2|\/|61 51
+T +T + ? , (51

whereK is again equal to 3848, and

1 1 1
E=— (113~ —5+52—% —165—|, (52
12aw?| (113 5045)mg > m, ° mJ’ 52
E= 1237+ 5544) — — 5965 + 1833
VYRR %) m; m2,, mz |’
(53
F= 47+21 ! 28i+75i 54
= Taw? @)mg ms,  mi| 4

2In each of these papers the black hole was surrounded by a thin
perfectly reflecting cavity. The specific value of the integration con-
stantk, was obtained in those cases by requirgagto be continu-
ous at the cavity wall. In the present work, none of our results will
depend on the numerical value chosenKgr
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The integration constants in Eq80),(51) are handled in the Taking Eq. (38) with Eq. (58), the perturbation to the
same manner as in the massless case; in particular, the blagkisotropy can be written explicitly in terms of components
hole massM is the “dressed” or renormalized mass. The of the stress-energy as

field massesng, my,, My, are effective masses defined as

described in Sec. IIl. B 47T o 1 5
The perturbations of the Schwarzschild metric caused by Sa=— e2M—T) T+ (2M—T) TT0dT|.
the presence of massive fields are small, and the DeWitt- (59

Schwinger approximation valid, so long as the Compton
wavelength of the field is significantly less than the locallf the overall sign of the perturbation to the anisotropy is
radius of curvature of the spacetime. In the Schwarzschilghositive, then the semiclassical effects tend to isotropize the
interior, this will be true so long a§>(M/m?)%3, interior. Negative values ofa push the spacetime towards
greater anisotropy.
V. ANISOTROPY OF THE SCHWARZSCHILD INTERIOR The interp_r_etation_ of the _semiclassical perturbati_ons
would be facilitated if expressions governing the physical
Since the Schwarzschild interior represents a highly aneffects such as that fafa in Eq. (59) could be understood
isotropic cosmology, it is natural to ask whether semiclassisolely in terms of the stress-energy properties such as posi-
cal effects dampen or strengthen the anisotropy. Many studivity of the energy density. Unfortunately, inspection of Eq.
ies over the last quarter century have established that particl&9) shows such a hope is in vain; not only is the perturba-
production can rapidly isotropize an anisotropic cosmologytion in the anisotropy dependent on a mixture of stress-
[3-11]. As mentioned in the introduction, the analytical ap-energy tensor and metric components, but since there is an
proximations for massless fields are nonlocal and thus prolintegral in the expression fafa, the anisotropy depends on
ably take particle production into account to some extentthe stress-energy in a nonlocal fashion.
However, it is completely unknown at this point how well  Since the anisotropy is the ratio of the expansion rates
they do this. The DeWitt-Schwinger approximation for the along different spatial directions, careful consideration must
massive fields does not take particle production into accourtie given to the method of spacetime slicing used to compare
at all because it is a local approximation and particle producthe perturbed and unperturbed spacetimes. One choice would
tion is an intrinsically nonlocal phenomenon. Thus whatevelbe to consider slices which sit at equal proper times away
dissipation of anisotropy that is found due to all of thesefrom the horizon. Another choice, used in this paper, is to
approximations is likely to be less that what would occur if consider surfaces with equal values of the Schwarzschild
full numerical solutions to the nonlinear backreaction equaarea coordinatd.
tions were obtained. Taking the stress-energy tensors described in the previous
One measure of the anisotropy of the interior is the ratiosection for the quantized fields of interest, the contributions
of the Hubble expansion rates in the differing spatial direc-described in Eq(59) can then be computed for various spin
tions. In the present case, since the two spatial directions offelds on the Schwarzschild background. It should be noted
the two-spheres of symmetry are equivalent, there is onlywhen considering these results that the perturbation expan-

one ratio to calculate, say sions become less reliable as one proceeds away from the
horizon and towards the singularity, but the exact point at
dgyy dgyy which the perturbation should no longer be trusted is a mat-
Q00— Y00 3T ter of choice.
Hy dr dT ) ) ]
T T do T doo (55 The perturbation to the anisotropy in the presence of a
0 Yoo i massless scalar field is

gxx? gxxﬁ

1 J& 1] m¥e 7

The sign ofa is positive if the cosmology is expanding da= T(2M—T)2 48 2880 + Tl124" 720
(or contracting in all three spatial directions. If the cosmol-

ogy is expanding or contracting isotropically, thes 1. M45¢  29] MO 5 3¢ 29 5¢
Evaluatinge for the metric of Eq.(36), we find, to first T2 12 720 T Blas 2| 11520 192
order ine
In(2M/T)] T2 T3 T4
B - + + 5(. (60)
a= agyt €da, (56) 960 2304 1152M 46080V }
where agg, is the ordinary Schwarzschild value, The sign of da clearly depends on the value of the scalar
curvature couplingé. For values of<5/36 the perturbation
-M is positive, and the field tends to isotropize the spacetime.
R TV (57) For values of¢é>12/55 the perturbation is negative and the

spacetime tends to more anisotropy. Between these two val-
ues, 5/36<£<<12/55, the perturbation isotropizes in some re-
gions of the interior and anisotropizes in other regions, as
shown in Fig. 1. For values af andT above the solid line,
_ }Td_‘f (58) the spacetime is pushed towards anisotropy. Valuesasfd
2 dT° T below the solid line makeSa>0, and the spacetime is

and
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0.221

0.220

& 0.219

0.218

0.125 ‘ ‘ ‘ 0.217 : ‘
1 1
(T/M) (T/M)

FIG. 1. The curve represents zero perturbation to the anisotropy FIG. 2. The curve represents zero perturbation to the anisotropy
of the interior for a massless scalar field as a function of the cooref the interior for a massive scalar field as a function of the coor-
dinateT and the curvature coupling Above the curve, the pertur- dinateT and the curvature coupling Above the curve, the pertur-
bations due to the scalar field make the spacetime more anisotropibations make the spacetime more anisotropic, and below the curve
and below the curve they make the spacetime more isotropic. Athey make the spacetime more isotropic. Bs>0, ¢ approaches
T—0, & approaches 5/36 on the curve. As-2M, ¢ approaches 47/216 on the curve. A —2M, ¢ approaches 1223/5544.

12/55.

isotropized in the presence of the scalar field. In this case, the Jda= 360 5

minimally coupled scalar field4=0) always isotropizes the
spacetime, whereas the conformally coupled figde- (/6) Mz[ 113 £

2| T T 75 6048 12

M[ 113 ¢
15120 240, T 7920320 80
1{ 113 g} 1{ 113 g”

a5 | o 12

only isotropizes in the interior regions near the horizon. T
The perturbation due to the massless spin-1/2 field is

* 121120060 240/ " MT| 483840 960

1 M5 1 M* 97 M3 19
5&’:—2 _—3—+—2—_—— (63)
w(2M—=T) T° 192 T< 2880 T 2880
2
—M?2 59 M [ 97 + 7In(2M/T)} 4 wherem is the effective field mass defined in E§2). Simi-
11520 46080 3840 9216 lar to the case of the massless scalar field, the exact sign of

the perturbation depends on the value of the scalar curvature
(61) coupling. When¢>1223/5544, the presence of the field

makes the spacetime more anisotropic, and whed7/216

the push is always towards isotropy. As shown in Fig. 2,

there exists a range of values 47/216<1223/5544 over
For T>0.5, which is the region where the perturbation ex-which some interior regions are isotropized and others are
pansion can be trusted, this always pushes the spacetime tqot. As before, values of and T above the solid line have
wards greater isotropy. Sa<0 and the spacetime tends towards anisotropy. For val-

The massless vector field perturbation to the anisotropy iges below the solid line§a>0, and the tendency is towards

isotropy. Both minimal and conformal coupling fall within

773 7T4
+ + (-
4608(M  184320M

this regime.
See 1 [ 19Mm° . 211M* 3 o7™m?3 N 343m° The perturbation due to a massive spinor field is
YT @(2M-T)2|  241° T 36012 360T 1440
451 In(2M/T)] T2 T 1 (M*7 M®113 M? 13 M 13
—MT + + ba=——) =5 gnt 75 =z t T3
5760 480 1152 576(M am<| T° 90 T> 1512 T* 3780 T° 10080
. T4 ] 62 1 13 1 13 64
23040M° * 7230240 MT 120960 64

and pushes towards anisotropy for all valuesToin the  which is manifestly positive for all values &f, and hence
interior. decreases the anisotropy.

The impact of massive fields of varying spin can be con- Similarly, the massive vector field perturbation to the an-
sidered as well. For the massive scalar field isotropy is
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S 1 (M*5 M3 55 M2 11 M 11 0.0
¥~ m?| 76 247 75 2016 T° 1008 T° 2688
1 11 1 11 65
T T2 8064 MT 32256 €9 1.9
which is manifestly negative for all, and so always tends to g

increase the anisotropy.

VI. APPROACHING THE FINAL SINGULARITY

Ever since it was realized that singularities could not be
avoided in physically plausible spacetimes, quantum effects

have been invoked as the physical instrument which might -3.0 ‘ ‘

restore regularity to spacetime, by banishing singular behav- 0 TlM E

ior. While it is impossible for a perturbative analysis to de- (T/M)

termine  whether quantum effects will eradicater FIG. 3. The curve represents zero perturbation to the

strengtheh the singularity, it is possible to determine how kretschmann scalar for a massless scalar field as a function of the
the growth of curvature as one approaches the singularity igoordinateT and the curvature coupling. Above the curve, the
initially affected by the semiclassical perturbation, before theperturbations are positive, increasing the rate of curvature growth,
semiclassical correction grows so large that the perturbativend below the curve the perturbations are negative, decreasing the
approach becomes invalid. growth of curvature relative to the classical solution.

The simplest way to see the effect of quantized fields on

the growth of curvature as one approaches the singularity ighether the singularity is ultimately strengthened or weak-
to examine the perturbations of curvature scalars. One sucthed or even removed by quantum effects cannot be an-
scalar is the Kretschmann scalar, which for unperturbedyered definitively within the perturbative approach em-

Schwarzschild is ployed here.
) In order to gain insight into whether the quantum effects
_ paBuv _48M associated with the different fields would tend to strengthen
KSCh_ R Raﬁ;uz_ 6 (66) . . . . . . .
T or weaken the singularity, we examine the direction in which

_ the perturbed Kretschmann scalar initially deviates from the
The Kretschmann scalar is perfectly well behaved near thelassical value, at largg, where the perturbed metric is most

horizonT=2M, but diverges strongly, a§*6,_asT—>o. valid. If the sign ofsK is positive, the initial rate of growth
_EvaluatingK to first order ine for the metric of Eq(36)  of curvature as one approaches the singularity will be
will yield strengthened. ISK is negative, then the initial rate of growth

_ of curvature will be weakened when compared to the classi-
K=Ksent €oK. (&7 cal metric. We consider the sign of the perturbation for all
The first order correction to the Kretschmann scalar can bQosstl)ble value_s OTI’. dsmce one calnnot Isay ﬂ;;t;he pedrzjgrba-
written in terms of the perturbation functionsand o as t!on ecomes invall ata partlc_u ar value ofvithout addi-
tional information about a particular black hole. However,

M?2 M M?2 M M?2 our results are certainly only valid in the domain where
5K=Tj—127]?4‘27]1724‘377'?2——77’?_50"?— |5K|<|K|
The perturbation tKgg, in the presence of a massless
M Mz scalar field is
+o ?+20' 7—(TM , (68)
. . - _ 768w M> M4
where primes denote differentiation with respecito oK = —4{—5[2048+ 1920¢]— —4[400—-960£]
In general the perturbation to the Kretschmann scalar di- ATHLT T
verges more strongly that the classical scalar, namely ds M3 M2
for massless field perturbations andTas? for massive field - ?3—[240— 480¢] +?7[16— 7206 —-48In(2M/T)]

perturbations. On this basis, one might expect that quantum

effects always increase the rate of curvature growth,

strengthening the singularity. However, it must be kept in +12?+1
mind that the perturbed metric and curvature are only valid

in the region where the deviation from the classical

Schwarzschild metric is small. Precisely whdfer what  The sign of6K depends on the value of the scalar curvature
value ofT) the perturbed metric becomes a poor approxima<oupling, . Figure 3 shows a plot of the curvature coupling
tion to a full self-consistent solution depends on a number of vs T over the interior. The solid line represents valueg of
factors, including the mass of the black hole. It is clear,andT for which K=0. For points below the solid line, the
however, that the perturbed metric can never be valid all theerturbation to the Kretschmann scalar is negative, and for
way down to the singularity af=0. Thus, questions about values above the line the perturbation is positive. For all

: (69
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non-negative values of the curvature coupling, the contribu- 0.20
tion is positive, and hence curvature grows faster than in the
unperturbed metric.

The massless spinor field perturés, by 0.15

_134477J9536|v|5 3120M* 1760M3

ATH |7 TS 7 T 7T T g 0.10
M 368+336I 2M/T) |+ saM +1 70
727 Py EMID [ g gy (0

The perturbation of Eq(70) changes sign in the interior,
yielding a negative contribution to the Kretschmann scalar
for T>1.479M, and a positive contribution to the 1
Kretschmann scalar fof <1.479M. Whether the perturba- (T/M)
tion strengthens or weakens the growth of curvature thus

depends on the value df at which the perturbed metric FIG. 4. The curve represents zero perturbation to the
becomes unreliable. Kretschmann scalar for a massive scalar field as a function of the

The massless vector field perturbation to the KretschmanfordinateT and the curvature coupling. Above the curve, the
perturbations to Kretschmann are positive, and below the curve the

0.00 . L

scalar is ! !
perturbatlons are negative.
1536w M> M4 M3 o y . o
oK= T4 145281_—5 - 1680T—4+4960_F which is positive for all values of in the interior; hence the
massive vector field strengthens the growth of curvature as
2 M the singularity is approached.

M
— Tz [1664+48IN(2M/T)]+12= +1¢, (1)
VII. DISCUSSION AND SUMMARY

which is positive for all values of in the interior; the mass- In this paper we have calculated the linearized perturba-
less vector field thus seems to strengthen the growth of CUjyng of the Schwarzschild black hole interior due to a col-
vature as the s!ngulquty IS approa(_:hed. L lection of quantized matter fields. The stress-energy tensor of
Similar considerations can be given to massive fields. Ifne matter fields has been described using analytic approxi-
the case of the massive scalar field mations. For massless fields, we have used the approxima-

1 M6 tions of Page, Brown, and Ottew(lR0] for the spinor field,
K= ———————ol — —[2112- 3225¢] the approximation of Jensen gnd OtteWiB] for the vector
5040mmT>( T field, and that of Anderson, Hiscock, and Sanj2] for the

M5 scalar field. Massive fields have been treated using the
—2304— +113— 5o4§]_ (72 DeWitt-Schwinger approximation, as developed by Frolov
T and Zel'nikov[24] and Anderson, Hiscock, and Sam{&2].

ure 4 shows a plot of the curvature coupliaigs T over the approximations. One could attempt to construct fully self-

interior. Values of€ andT below the solid line yielddK <0.  -qqigtent solutions to the semiclassical equations using the
For points above the solid line)k>0. The minimally  peyyitt-Schwinger approximation for massive fields or the
coupled massive scal_ar fle_ld weakens the growth o_f Curvat”rgpproximations of Frolov and Zelnikof21] or Anderson,
over most of the interior, but near the horizon, for yiscock and SamudR?] for massless fields. However, se-
T>1.973V, the curvature is strengthened. For the confor-jq,,s hroblems arise in such calculations. For massless fields
mally coupled scalar field, the rate of curvature growth iSihe anaivtical approximations diverge logarithmically on the
always greater than in the unperturbed Schwarzschild metrigyent horizon in any static non-Ricci-flat spacetime. Numeri-
For the massive spinor field cal computations of the stress-energy tensor in Reissner-
M6 M5 Nordstran spacetimes[22,29 indicate that these diver-
_595%+ 2304T_5+ 13}, (73  9ences are not real._ They are simply an |nd|cat_|on that it is
only for Schwarzschild spacetime that the analytical approxi-
mations are valid near the event horizon. For massive fields
which is negative for all interior values of the coordindte  the DeWitt-Schwinger approximation gives no divergent be-
hence the massive spinor field softens the approach to thgavior on the event horizon of any black hole. However, this
singularity, decreasing the rate of increase of the curvatureapproximation is valid only in the limit that the Compton
In contrast, the massive vector field has wavelength of the field is much smaller than the radius of
6 5 curvaturt_a of the spagetime. Thus the best thfit can be done
864OM—— 2304M__ 55 (74) when using the DeWitt-Schwinger approximation is to solve
T T° ' the semiclassical equations perturbatively, in which case the

oK

N 1260n-m2T6[

K= 16807rm2T6[
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first order term is definitely the most important. Therefore, itsingularity. While in all cases the perturbed curvature ulti-
will be necessary to numerically compute the stress-energgnately diverges more strongly than in the classical
tensor to study semiclassical interior effects beyond the levebchwarzschild metric, the perturbed metric becomes an in-
of linear perturbation theory. valid approximation to the true semiclassical metric long be-
We have addressed the question of whether anisotropy fere that occurs. Accordingly, within the context of pertur-
dissipated in the interior by treating the black hole interior asbation theory, it is impossible to determine whether quantum
an anisotropic, homogeneous cosmology and examiningffects might substantially change the character of the singu-
whether the perturbed metric has greater or lesser anisotropgrity (perhaps even eliminating)itOne can, however, ask
than the background Schwarzschild metric. We find thatwhether an observer approaching the final black hole singu-
minimally and conformally coupled scalar fields, and thelarity will measure larger or smaller curvature in the per-
spinor field, decrease the anisotropy as one approaches the@bed metric than in the classical Schwarzschild case. We
singularity, while vector fields increase the anisotropy. Thesdind that massless fields of all spin, the conformally coupled
results are described from the point of view of the black holemassive scalar and massive vector fields, generally
interior, which as a cosmology is a universe approaching atrengthen the singularitycurvature grows faster than in
final singularity. If one instead interpreted our results inSchwarzschildd while the massive minimally coupled scalar
terms of the white hole portion of the Schwarzschild Penros@nd spinor fields weaken the growth of curvature in the do-
diagram, then scalar and spinor fields would enhance anisotrain where the perturbed metric is valid.
ropy as one moves away from the singularity, while vector
fields would reduce it. However as previously mentioned, in
this case the boundary conditions for the fields are “final”
rather than “initial” conditions. This work was supported in part by NSF Grants Nos.
We have also examined whether there is any evidence fdPHY92-07903 and PHY95-11794VN.A.H.), and PHY95-
the semiclassical perturbation modifying the approach to th&é2686(P.R.A).
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