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First-order semiclassical perturbations to the Schwarzschild black hole geometry are studied within the black
hole interior. The source of the perturbations is taken to be the vacuum stress-energy of quantized scalar,
spinor, and vector fields, evaluated using analytic approximations developed by Page and others~for massless
fields! and the DeWitt-Schwinger approximation~for massive fields!. Viewing the interior as an anisotropic
collapsing cosmology, we find that minimally or conformally coupled scalar fields, and spinor fields, decrease
the anisotropy as the singularity is approached, while vector fields increase the anisotropy. In addition, we find
that for massless fields of all spins, the massive conformally coupled scalar field, and massive vector fields, the
metric perturbations initially strengthen the singularity, while for minimally coupled massive scalar and spinor
fields the metric perturbations tend to initially slow the growth of curvature.@S0556-2821~97!06118-3#

PACS number~s!: 04.70.Dy, 04.60.Gw, 04.62.1v

I. INTRODUCTION

The application of quantum field theory to curved space
has resulted in a large array of interesting and important
results. These include black hole evaporation@1# and its im-
plications for black hole thermodynamics@2#, the dissipation
of anisotropy by particle production in cosmological space-
times @3–11#, and the removal of cosmological singularities
by vacuum polarization effects@12–16#. One of the places
for which quantum effects have been studied the least is the
interior of a black hole. One might think that such studies are
not interesting because no observer from the exterior region
can probe the interior region unless they choose to fall into
the hole. However the existence of black hole evaporation
makes it quite possible to eventually learn about quantum
effects in the interior of a black hole.1 This is because as a
black hole evaporates more and more of its interior is ex-
posed. Thus not only can quantum effects in the interior of a
black hole eventually be detected, they may have a signifi-
cant influence on the evaporation process.

Quantum effects in the interior may in fact have a direct
bearing on two of the most fundamental outstanding issues
relating to the quantum mechanics of black holes. One of
these is the question of what happens during the late stages
of black hole evaporation, that is, what is the end point of the
evaporation process? The other is the question of what hap-
pens to the information about how the black hole formed.
There are at least two ways in which quantum effects in the
interior could affect the answers to these questions. One is
that if quantum effects remove the singularity predicted by
general relativity then it is very likely that the evolution will
be unitary and information will not be destroyed. A second

possibility is that quantum effects could cause the evapora-
tion process to cease, leaving a zero temperature black hole
remnant. If the remnant has an event horizon the information
would very likely be trapped inside the black hole. Since the
temperature of a black hole is determined by the surface
gravity at its horizon and since the evaporation process
causes the horizon to be at points which were previously in
the ~apparent! interior, it is clear that the geometry of the
interior is likely to influence the evaporation process as it
progresses.

One interesting quantum effect that seems likely to occur
inside the horizon of a black hole is the dissipation of anisot-
ropy and possibly inhomogeneity due to particle production.
This is because the interior of such a black hole can be
thought of as an anisotropic and possibly inhomogeneous
cosmology. For example the interior of a Schwarzschild
black hole can be thought of as a homogeneous, anisotropic
cosmology of the Kantowski-Sachs family@17#. It has been
well established that particle production dissipates anisot-
ropy in Bianchi type I spacetimes@3–11#. If the process of
anisotropy dissipation occurs it will certainly alter the geom-
etry in the interior of a black hole.

For these reasons it is interesting to examine quantum
effects in the interior of a black hole. To do so for either the
interior or exterior of an evaporating black hole would be an
enormously difficult task at present due to problems that one
would encounter in computing the stress-energy tensors for
quantized fields in the relevant spacetime. However, comput-
ing the stress-energy tensors for these fields in the case of a
spherically symmetric black hole in thermal equilibrium with
radiation in a cavity, i.e., with the fields in the Hartle-
Hawking state, is a much more tractable problem. The reason
is that there are then three Killing vector fields in the space-
time, which makes the mode equations separable.

For a black hole in equilibrium with fields in the Hartle-
Hawking state, analytical approximations for the stress-
energy tensors of various types of quantized fields have been
obtained. The derivations of most of these approximations
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have been for the exterior region, but, as is discussed later,
they all can easily be extended to the interior region. These
approximations include those of Page, Brown, and Ottewill
@18–20# for conformally invariant fields in Schwarzschild
spacetime, that of Frolov and Zel’nikov@21# for conformally
invariant fields in a general static spacetime, that of Ander-
son, Hiscock, and Samuel@22# for massless arbitrarily
coupled scalar fields in a general static spherically symmetric
spacetime, and the DeWitt-Schwinger approximation for
massive fields which was derived by Frolov and Zel’nikov
@23,24# for Kerr spacetime, by Anderson, Hiscock, and Sam-
uel @22# for a scalar field in a general static spherically sym-
metric spacetime and most recently by Herman and Hiscock
@25# for an arbitrary spacetime.

In this paper the various approximations mentioned above
are used to investigate quantum effects in the interior of a
Schwarzschild black hole when the fields are in the Hartle-
Hawking state. The resulting semiclassical backreaction
equations are linearized about the classical geometry and
their solutions are found. The questions of whether backre-
action effects tend to isotropize the spacetime and whether
they tend to ‘‘soften’’ the geometry as the singularity is ap-
proached are addressed. Although the questions of whether
the anisotropy is completely dissipated or whether the singu-
larity is removed cannot be answered by examining linear
perturbations, the results do provide insight into these issues.

In Sec. II the interior geometry of a Schwarzschild black
hole is reviewed and in Sec. III the various analytical ap-
proximations are reviewed and discussed. Solutions to the
linearized backreaction equations which are derived using
these approximations are displayed in Sec. IV. In Sec. V the
dissipation of anisotropy is computed and in Sec. VI the
change in the curvature is computed. The results are summa-
rized and discussed in Sec. VII.

II. SCHWARZSCHILD BLACK HOLE INTERIOR

The Schwarzschild black hole is described by the metric

ds252S 12
2M

r Ddt21S 12
2M

r D 21

dr21r 2dV2, ~1!

wheredV2 is the metric of the two-sphere. The coordinater
runs from 0 to`, and t from 2` to 1`. We are thus
considering the complete Schwarzschild manifold, as is ap-
propriate with the Hartle-Hawking vacuum state. The black
hole interior is the region in which 0<r<2M . In the inte-
rior, the vector field]/]r is timelike and the vector field]/]t
is spacelike; hence, the coordinatet is a spatial coordinate,
while r is a time coordinate.

The nature of the interior is more easily visualized if new
coordinate names are adopted to reflect the physical nature of
the coordinates in the region of interest. Defining new coor-
dinates by setting

T[r , x[t, ~2!

the metric takes the form

ds252S 2M

T
21D 21

dT21S 2M

T
21Ddx21T2dV2. ~3!

The metric given by Eq.~3! is clearly an anisotropic homo-
geneous cosmology. The vector field]/]t is, in the interior,
one of the spacelike Killing vector fields~along with those
on the two-sphere! which guarantee spatial homogeneity.
The spatial coordinatex here runs from2` to 1`, while T
runs from 2M down to zero at the curvature singularity in
the black hole interior.

The Schwarzschild manifold contains both an anisotropic
expanding universe, the ‘‘white hole’’ portion of the ex-
tended geometry, and an anisotropic collapsing universe, the
black hole interior. In this paper we shall base our discussion
on the black hole interior portion of the geometry, but all
conclusions may be restated in terms of the expanding white
hole geometry due to the time reversal symmetry of both the
Schwarzschild geometry and the Hartle-Hawking state we
shall use to perturb it. However, the boundary conditions for
the fields in the two cases are very different. In the black
hole case they are ‘‘initial’’ conditions, while in the white
hole case they are ‘‘final’’ conditions for the interior region.

While it is conventional to write homogeneous cosmo-
logical metrics in terms of a proper time coordinate, i.e.,

t5E dT

S 2M

T
21D 1/2, ~4!

in the present case the spatial metric components cannot be
expressed in closed algebraic form in terms of such a coor-
dinate. Upon carrying out the integral in Eq.~4!, one finds
that the range of the coordinateT from 2M down to 0 cor-
responds to an interval of proper time equal topM .

The spacetime described by the metric of Eq.~3!, viewed
as a cosmological model, is an anisotropic but homogeneous
spacetime in which~asT proceeds from 2M down to zero!
two spatial dimensions are collapsing while one is expand-
ing. The interior Schwarzschild cosmology is a special case
of a type I Kantowski-Sachs model@17#.

Since the Schwarzschild metric is a vacuum solution,
there is no naturally defined four-velocity of cosmological
‘‘matter;’’ however, to explore the properties of the solution
as an anisotropic cosmology, it is helpful to define a set of
fiducial geodesic observers with four-velocities given by

ua5S S 2M

T
21D 1/2

,0,0,0D . ~5!

These observers travel along world lines withx, u, and f
constant. In terms of the conserved quantities normally used
to describe geodesics in the exterior Schwarzschild metric,
these observers have zero angular momentum and zero en-
ergy at infinity.

The proper volume of a cube defined by a set of fiducial
observers at the corners, separated by coordinate distances
Dx, Du, andDf is given by

V~T!5S 2M

T
21D 1/2

T2DxDuDf. ~6!

Since the fiducial observers have four-velocities given by Eq.
~5!, the quantitiesDx, Du, andDf are constant. The volume
goes to zero at bothT50 andT52M .
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Near the singularity atT50, the Schwarzschild metric of
Eq. ~3! may be put into a form which is locally asymptotic to
a Kasner universe. Let coordinatesy and z be defined as
functions of and locally in the neighborhood of a point
(u0 ,f0) by

y52M ~u2u0!, z52Msin~u0!~f2f0!. ~7!

While these coordinates cannot be extended to cover the
two-sphere they are perfectly adequate to describe the expan-
sion and contraction of the cosmology in a local neighbor-
hood. Near the singularity, the Schwarzschild metric then
takes the form of a Kasner universe with exponents
p1521/3, p25p352/3:

ds252dt21S t

t0
D 22/3

dx21S t

t0
D 4/3

~dy21dz2!, ~8!

wheret054M /3 andt5(2T3/M )1/2/3. In a similar fashion,
the metric may be approximated by a flat Kasner
(p151, p25p350) solution nearT52M . There the cos-
mological proper time has the asymptotic form
t54M (12T/2M )1/2, and the asymptotic form of the metric
is

ds252dt21
t2

16M2 dX21~dy21dz2!, ~9!

ast→0. The singular behavior of Eq.~9! is of course only
apparent; the surfacet50 is actually the black hole event
horizon.

III. APPROXIMATE STRESS-ENERGY TENSORS

A. Massless fields

To calculate the linearized metric perturbations to the
Schwarzschild geometry resulting from the presence of
quantized fields, it is necessary to know the values of the
stress-energy tensors of those fields. Calculating the stress-
energy tensor for a quantized field on a black hole back-
ground spacetime is an arduous task, which has been carried
to completion only for a few cases. Howard and Candelas
have computed the stress-energy of a conformally invariant
scalar field in the Schwarzschild geometry@26,27#. Jensen
and Ottewill have computed the vacuum stress-energy of a
massless vector field in the Schwarzschild geometry@28#.
More recently Anderson, Hiscock, and Samuel have devel-
oped a method for computing the vacuum stress-energy for a
general~arbitrary curvature coupling and mass! scalar field
in an arbitrary static spherical spacetime and have applied
their method to the Reissner-Nordstro¨m geometry@22,29#.

In each of these studies, an analytic expression for^Tmn&
has been developed as a consequence of the procedure used
to compute the exact values for^Tmn&. These approximate
expressions are generated by using a fourth order WKB ex-
pansion for the field modes in the unrenormalized expression
for ^Tmn& and then subtracting off the DeWitt-Schwinger
counterterms@30# to renormalize the stress-tensor. The re-
sulting analytic expressions are closely related to approxi-
mate expressions for the vacuum stress-energy derived by
Page, Brown, and Ottewill~PBO! @18–20# and Frolov and
Zel’nikov ~FZ! @21#. The analytic approximation found by

Howard and Candelas is identical to the PBO approximation
for the conformal scalar field’s stress-energy in Schwarzs-
child spacetime; further, their numerical results show that the
approximation is quite accurate for all values ofr down to
the horizon. In the case of the vector field, the analytic ex-
pression derived by Jensen and Ottewill is equal to the PBO
approximation for a conformal vector field plus a traceless
term proportional tor 24; the resulting expression yields a
good match to the numerical results for the vector field@28#.
The analytic approximation developed by Anderson, His-
cock, and Samuel reduces to the FZ approximation when
restricted to conformal coupling; it has generally been shown
to be valid for arbitrary curvature coupling when compared
to numerical results in the Reissner-Nordstro¨m geometry
~which, of course, includes Schwarzschild geometry as a spe-
cial case!.

Each of these expressions has been derived in the exterior
region of the black hole. There is good reason to believe they
are valid in the interior also. The components of the curva-
ture tensors in an orthonormal frame are analytic functions of
r near the event horizon. Each of the approximations is also
an analytic function of the radial coordinater near the event
horizon. Thus the analytic extension of these approximations
into the interior region is trivial to obtain. Further Candelas
and Jensen@31# have numerically computed̂f2& in the in-
terior of a Schwarzschild black hole when the field is in the
Hartle-Hawking state. They find that Page’s approximation
@18# for ^f2& arises in a natural way from the calculation of
the renormalized Feynman Green function in the interior re-
gion and that it is a good approximation in much of the
interior region.

In this paper the Anderson, Hiscock, Samuel approximate
analytic stress-energy tensor will be used to describe the ef-
fects of quantized massless scalar fields with arbitrary curva-
ture coupling in the Schwarzschild interior. The Jensen-
Ottewill analytic approximation will be used for the stress-
energy tensor of massless vector fields. Massless spinor
fields will be treated using the PBO approximation. It should
be kept in mind, however, that the spinor field expression has
not yet been tested against an accurate numerical computa-
tion to establish its validity.

The components of the stress-energy tensor in Schwarzs-
child coordinates may then be expressed as follows:

^Tmn&5Cmn1~j21/6!Dmn , ~10!

whereCmn represents the conformally invariant contribution
to the vacuum stress-energy from all the fields, andDmn

represents the nonconformal contribution due to the scalar
fields, which we allow to have arbitrary curvature coupling.
Applying the approximations discussed above,

CT
T5

e

lM2H aF112S 2M

T D13S 2M

T D 2G1a3S 2M

T D 3

1a4S 2M

T D 4

1a5S 2M

T D 5

1a6S 2M

T D 6J , ~11!

where

a5h~0!1
7

8
h~1/2!1h~1!, ~12!
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a354h~0!2
13

2
h~1/2!276h~1!, ~13!

a455h~0!2
35

8
h~1/2!1295h~1!, ~14!

a556h~0!2
9

4
h~1/2!254h~1!, ~15!

a6515h~0!1
15

8
h~1/2!1285h~1!, ~16!

Cx
x5

3e

lM2H 2aF112S 2M

T D13S 2M

T D 2

14S 2M

T D 3G
1b4S 2M

T D 4

1b5S 2M

T D 5

1b6S 2M

T D 6J , ~17!

where

b4525h~0!2
45

8
h~1/2!1105h~1!, ~18!

b5526h~0!2
31

4
h~1/2!226h~1!, ~19!

b6533h~0!1
161

8
h~1/2!183h~1!, ~20!

and

Cu
u5Cf

f5
e

lM2H aF112S 2M

T D13S 2M

T D 2G1c3S 2M

T D 3

1c4S 2M

T D 4

1c5S 2M

T D 5

1c6S 2M

T D 6J , ~21!

c354h~0!1
17

2
h~1/2!144h~1!, ~22!

c455h~0!1
85

8
h~1/2!2305h~1!, ~23!

c556h~0!1
51

4
h~1/2!166h~1!, ~24!

c6529h~0!1
87

8
h~1/2!2579h~1!. ~25!

The constants e and l are defined by e5\/M2,
l5(453213)p2, andh(s) is the number of helicity states in,
respectively, the scalar, spinor, and vector fields present. Ex-
plicitly, h(0) simply counts the number of scalar fields
present,h(1/2) is equal to 2~or 4! for each two-~or four-!
component spinor field present;h(1) is equal to 2 times the
number of vector fields present. The nonconformal contribu-
tion to the scalar field stress-energy is given by

DT
T5260h~0!

e

lM2S 2M

T D 3F423S 2M

T D GF112S 2M

T D
13S 2M

T D 2G , ~26!

Dx
x5180h~0!

e

lM2S 2M

T D 4F112S 2M

T D25S 2M

T D 2G ,
~27!

Du
u5120h~0!

e

lM2S 2M

T D 3F112S 2M

T D13S 2M

T D 2

212S 2M

T D 3G . ~28!

These expressions exhibit a variety of interesting behavior
in the black hole interior. The energy density,r52^TT

T&, is
negative at the horizon for the conformally coupled scalar
field and the vector field; it is positive there, however, for the
spinor field and for any scalar field withj.1/4. The energy
density diverges negatively as the singularity is approached
for all conformal fields; however, the density diverges posi-
tively for scalar fields withj,5/36, which includes the mini-
mally coupled scalar field. There is a particular surface,
T53M /2, on which the energy density of the scalar field is
independent of the curvature coupling.

The spatial stress in thex direction,^Tx
x&, is positive at the

horizon for all scalar fields withj,4/15, which includes
both the minimally coupled and conformally coupled cases,
and for the conformal vector field. The stress is negative at
the horizon for the spinor field. This stress diverges in a
positive fashion as the singularity is approached for all con-
formal fields and also for the minimally coupled scalar field.

The tangential stress,^Tu
u&, is everywhere positive in the

domain of interest for the minimally coupled scalar field and
the spinor field; it is also everywhere negative for the vector
field. The conformal scalar field haŝTu

u& positive at the
horizon, but diverging negatively as the singularity is ap-
proached.

B. Massive fields

The technique of choice for computing an approximate
renormalized stress-energy tensor in the massive case is the
DeWitt-Schwinger approximation for̂Tm

n &. This is obtained
by performing the DeWitt-Schwinger expansion of the
stress-energy tensor, in inverse square powers of the field
mass,m, and then subtracting off the first, divergent terms of
the expansion@32#. The remaining terms of the asymptotic
series may be used as an analytic approximation to^Tm

n &. In
this paper, approximations for the stress-energy tensor of
massive quantized fields have been derived from the previ-
ous work of Frolov and Zel’nikov@24#, who used the
DeWitt-Schwinger approximation to find the renormalized
stress-energy for massive fields in the Kerr spacetime. For
the massive scalar field in the Schwarzschild limit, Frolov
and Zel’nikov’s Kerr results have been found to reduce to the
stress-energy obtained by other renormalization methods
@23#.
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By taking the zero angular momentum limit (a→0) of
the Kerr results, the DeWitt-Schwinger approximation to the
stress-energy in Schwarzschild may be found for an arbitrary
collection of scalar, spinor, and vector fields. The resulting
stress-energy tensor may again be decomposed into the con-
tributions of the conformally coupled fields,Cm

n , and the
contribution of a possibly nonconformal scalar field,Dm

n ,
according to Eq.~10!. The components of the approximate
stress-energy tensor for conformally coupled massive fields
are

CT
T5

M2

1440p2T8H F15211S 2M

T D G 1

m0
2 1F36228S 2M

T D G 1

m1/2
2

1F299175S 2M

T D G 1

m1
2J , ~29!

Cx
x5

M2

10080p2T8H F22851313S 2M

T D G 1

m0
2

1F25401596S 2M

T D G 1

m1/2
2

1F166521833S 2M

T D G 1

m1
2J , ~30!

Cu
u5

M2

10800p2T8H F23151367S 2M

T D G 1

m0
2

1F27561884S 2M

T D G 1

m1/2
2

1F207922427S 2M

T D G 1

m1
2J , ~31!

wherem0, m1/2, andm1 are the ‘‘effective masses’’ of the
scalar, Dirac spinor, and vector fields present. If there is no
field present for a particular spin, then its effective mass is
set equal to infinity. If there are multiple fields with a given
spin, possibly with differing masses~e.g., the massive spin-
1/2 fields in nature, representing the differing leptons and
quarks!, then the effective mass is calculated according to

1

meff
2

5(
i 51

n
1

mi
2

, ~32!

where the sum on the right-hand side is taken over then
fields of given spin present.

The nonconformal scalar stress-energy contribution is
given by

DT
T5

M2

20p2m0
2T8F2413S 2M

T D G , ~33!

Dx
x5

M2

20p2m0
2T8F10211S 2M

T D G , ~34!

Du
u5

M2

10p2m0
2T8F627S 2M

T D G . ~35!

The DeWitt-Schwinger approximation for the stress-
energy will be valid for sufficiently massive fields, when the
Compton wavelength of the field,|5\/m, is much smaller
than the horizon radius of the black hole.

As was the case with the massless fields, these expres-
sions show interesting behavior in the interior of the black
hole. At the horizon, the energy density,r52^TT

T&, is nega-
tive for all scalar fields withj,2/9, which includes the con-
formally and minimally coupled scalar fields. The spinor
field has negative energy density at the horizon as well,
whereas the vector field has positive energy density. As the
singularity is approached the energy density diverges in a
positive fashion for scalar fields withj,47/216, which
again includes both the conformally and minimally coupled
scalar fields. The energy density of the spinor field has a
similar positive divergence, while the vector field energy
density diverges negatively. Just as in the massless field case,
the energy density of the scalar field is independent of the
curvature coupling on the surfaceT53M /2.

The spatial stress in thex-direction, ^Tx
x&, is positive on

the horizon for all scalar fields withj,2/9, including the
minimal and conformally coupled cases. As the singularity is
approached, the stress shows a positive divergence for all
scalar fields withj,1237/5544. For the spinor field, the spa-
tial stress is also positive on the horizon and diverges in a
positive direction as the singularity is approached. The vec-
tor field has negative stress in both limits.

The tangential stress,^Tu
u&, is positive for all scalar fields

with j,55/252, including the conformal scalar field. Again
in this case, the stress for the spinor field is positive on the
horizon and as the singularity is approached, and the vector
field has negative stress in both cases.

IV. SEMICLASSICAL BLACK HOLE INTERIORS

The linearized perturbations to the Schwarzschild metric
resulting from the stress-energy of a quantized field~within
the various analytic approximation schemes discussed in the
previous section! have been described for the massless con-
formal scalar field by York@33#, for the massless vector field
by Hochberg and Kephart@34#, and for the massless spinor
field by Hochberg, Kephart, and York@35#. The perturbed
geometry associated with a quantized massless scalar field
with arbitrary curvature coupling has been analyzed by
Anderson, Hiscock, Whitesell, and York@36#. In these pre-
vious calculations it was most convenient to describe the
metric perturbations in ingoing Eddington-Finkelstein coor-
dinates, (v,r ,u,f).

The study of the interior semiclassical effects proceeds
most naturally however in terms of the original Schwarzs-
child coordinates~albeit with new names in the interior!. In
those coordinates, the perturbed metric may be written in the
form

ds252S 2M

T
21D 21

@11eh~T!#dT21S 2M

T
21D

3@11es~T!#dx21T2dV2. ~36!

The Einstein equations, to first order ine, then have the form
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d

dT
@~2M2T!h#5

8pT2^Tx
x&

e
, ~37!

ds

dT
52

8pT2^TT
T&

e~2M2T!
2

h

2M2T
. ~38!

A. Massless fields

Integrating Eqs.~37!,~38! using the approximate stress-
energy tensor for a collection of massless quantized fields
given in Eqs.~11!–~28!, one obtains

Kh5AF S T

2M D 2

14S T

2M D112S 12
T

2M D 21

lnS 2M

T D G1A0

1A1S 2M

T D1A2S 2M

T D 2

1A3S 2M

T D 3

, ~39!

Ks5AF S T

2M D 2

18S T

2M D224S 3M2T

2M2TD lnS 2M

T D G1B0

1B1S 2M

T D1B2S 2M

T D 2

1B3S 2M

T D 3

, ~40!

whereK53840p, and the coefficientsAi , Bi are given by

A5
8h~0!17h~1/2!18h~1!

24
, ~41!

A05
1

24
@8~1092360j!h~0!143h~1/2!1375h~1!#,

~42!

A15
1

24
@8~1260j!h~0!167h~1/2!22872h~1!#, ~43!

A25
1

6
@8~211130j!h~0!217h~1/2!288h~1!#, ~44!

A35
1

24
@8~2831300j!h~0!2161h~1/2!2664h~1!#,

~45!

B05
1

24
@8~1552720j!h~0!1365h~1/2!2565h~1!#1k0 ,

~46!

B15
1

8
@8~2271100j!h~0!289h~1/2!11064h~1!#,

~47!

B25
1

12
@8~2231120j!h~0!241h~1/2!1296h~1!#,

~48!

and

B35
5

24
@8~25136j!h~0!1h~1/2!1152h~1!#. ~49!

The form of Eq.~46! has been chosen so that the integra-
tion constant ins is expressed in terms of the integration
constant,k0, which has appeared in previous papers2 @33–
36#. The integration constant which is associated withh has
been absorbed via renormalization intoM ; the constantM
which appears in these equations is thus to be interpreted as
the ‘‘dressed’’ mass of the black hole.

The semiclassical metric of Eq.~36! is valid only when
the perturbations,eh and es, are small compared to unity.
The perturbations are small at the horizon,T52M , for black
hole masses greater than or equal to the Planck mass~recall
e5\/M25M P

2 /M2). Of course, the perturbations can al-
ways be made large by taking the large-N limit, whereN is
the number of quantized fields present. For reasonable num-
bers of fields, and black hole masses greater than the Planck
mass, it is possible to approach the singularity atT50 fairly
closely. As an example, if we takeh(0)50, h(1/2)56,
h(1)52, representing three massless neutrino fields and one
massless vector field, and a black hole mass ofM5M P ,
then the perturbations reach a strength of 1021 at about
T5M ; for a solar mass black hole, however, the perturbation
does not reach this strength untilT'3310221

cm52310226M .

B. Massive fields

Integrating Eqs.~37!,~38! using the approximate stress-
energy tensor for a collection of massive quantized fields
given in Eqs.~29!–~35!, one obtains

Kh5EF S 2M

T D1S 2M

T D 2

1S 2M

T D 3

1S 2M

T D 4

1S 2M

T D 5G
1ẼS 2M

T D 6

, ~50!

Ks5k02EF251S 2M

T D1S 2M

T D 2

1S 2M

T D 3

1S 2M

T D 4

1S 2M

T D 5G1FF S 2M

T D 6

21G , ~51!

whereK is again equal to 3840p, and

E5
1

126M2F ~1132504j!
1

m0
2 152

1

m1/2
2 2165

1

m1
2G , ~52!

Ẽ5
1

126M2F ~2123715544j!
1

m0
2 2596

1

m1/2
2 11833

1

m1
2G ,
~53!

F5
1

18M2F ~2471216j!
1

m0
2 228

1

m1/2
2 175

1

m1
2G . ~54!

2In each of these papers the black hole was surrounded by a thin
perfectly reflecting cavity. The specific value of the integration con-
stantk0 was obtained in those cases by requiringgtt to be continu-
ous at the cavity wall. In the present work, none of our results will
depend on the numerical value chosen fork0.
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The integration constants in Eqs.~50!,~51! are handled in the
same manner as in the massless case; in particular, the black
hole massM is the ‘‘dressed’’ or renormalized mass. The
field massesm0, m1/2, m1, are effective masses defined as
described in Sec. III.

The perturbations of the Schwarzschild metric caused by
the presence of massive fields are small, and the DeWitt-
Schwinger approximation valid, so long as the Compton
wavelength of the field is significantly less than the local
radius of curvature of the spacetime. In the Schwarzschild
interior, this will be true so long asT@(M /m2)1/3.

V. ANISOTROPY OF THE SCHWARZSCHILD INTERIOR

Since the Schwarzschild interior represents a highly an-
isotropic cosmology, it is natural to ask whether semiclassi-
cal effects dampen or strengthen the anisotropy. Many stud-
ies over the last quarter century have established that particle
production can rapidly isotropize an anisotropic cosmology
@3–11#. As mentioned in the introduction, the analytical ap-
proximations for massless fields are nonlocal and thus prob-
ably take particle production into account to some extent.
However, it is completely unknown at this point how well
they do this. The DeWitt-Schwinger approximation for the
massive fields does not take particle production into account
at all because it is a local approximation and particle produc-
tion is an intrinsically nonlocal phenomenon. Thus whatever
dissipation of anisotropy that is found due to all of these
approximations is likely to be less that what would occur if
full numerical solutions to the nonlinear backreaction equa-
tions were obtained.

One measure of the anisotropy of the interior is the ratio
of the Hubble expansion rates in the differing spatial direc-
tions. In the present case, since the two spatial directions on
the two-spheres of symmetry are equivalent, there is only
one ratio to calculate, say

a5
Hx

Hu
5

guu

dgxx

dt

gxx

dguu

dt

5

guu

dgxx

dT

gxx

dguu

dT

. ~55!

The sign ofa is positive if the cosmology is expanding
~or contracting! in all three spatial directions. If the cosmol-
ogy is expanding or contracting isotropically, thena51.

Evaluatinga for the metric of Eq.~36!, we find, to first
order ine

a5aSch1eda, ~56!

whereaSch is the ordinary Schwarzschild value,

aSch5
2M

2M2T
, ~57!

and

da5
1

2
T

ds

dT
. ~58!

Taking Eq. ~38! with Eq. ~58!, the perturbation to the
anisotropy can be written explicitly in terms of components
of the stress-energy as

da52
4pT

e~2M2T!FT2^TT
T&1

1

~2M2T!
E T2^Tx

x&dTG .
~59!

If the overall sign of the perturbation to the anisotropy is
positive, then the semiclassical effects tend to isotropize the
interior. Negative values ofda push the spacetime towards
greater anisotropy.

The interpretation of the semiclassical perturbations
would be facilitated if expressions governing the physical
effects such as that forda in Eq. ~59! could be understood
solely in terms of the stress-energy properties such as posi-
tivity of the energy density. Unfortunately, inspection of Eq.
~59! shows such a hope is in vain; not only is the perturba-
tion in the anisotropy dependent on a mixture of stress-
energy tensor and metric components, but since there is an
integral in the expression forda, the anisotropy depends on
the stress-energy in a nonlocal fashion.

Since the anisotropy is the ratio of the expansion rates
along different spatial directions, careful consideration must
be given to the method of spacetime slicing used to compare
the perturbed and unperturbed spacetimes. One choice would
be to consider slices which sit at equal proper times away
from the horizon. Another choice, used in this paper, is to
consider surfaces with equal values of the Schwarzschild
area coordinateT.

Taking the stress-energy tensors described in the previous
section for the quantized fields of interest, the contributions
described in Eq.~59! can then be computed for various spin
fields on the Schwarzschild background. It should be noted
when considering these results that the perturbation expan-
sions become less reliable as one proceeds away from the
horizon and towards the singularity, but the exact point at
which the perturbation should no longer be trusted is a mat-
ter of choice.

The perturbation to the anisotropy in the presence of a
massless scalar field is

da5
1

p~2M2T!2H M2F j

48
2

17

2880G1
M3

T F j

24
2

7

720G
1

M4

T2 F5j

12
2

29

720G1
M5

T3 F 5

48
2

3j

4 G1MTF 29

11520
2

5j

192

2
ln~2M /T!

960 G1
T2

2304
1

T3

11520M
1

T4

46080M2J . ~60!

The sign ofda clearly depends on the value of the scalar
curvature coupling,j. For values ofj,5/36 the perturbation
is positive, and the field tends to isotropize the spacetime.
For values ofj.12/55 the perturbation is negative and the
spacetime tends to more anisotropy. Between these two val-
ues, 5/36,j,12/55, the perturbation isotropizes in some re-
gions of the interior and anisotropizes in other regions, as
shown in Fig. 1. For values ofj andT above the solid line,
the spacetime is pushed towards anisotropy. Values ofj and
T below the solid line makeda.0, and the spacetime is
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isotropized in the presence of the scalar field. In this case, the
minimally coupled scalar field (j50) always isotropizes the
spacetime, whereas the conformally coupled field (j51/6)
only isotropizes in the interior regions near the horizon.

The perturbation due to the massless spin-1/2 field is

da5
1

p~2M2T!2H 2
M5

T3

1

192
1

M4

T2

97

2880
2

M3

T

19

2880

2M2
59

11520
2MTF 97

46080
1

7ln~2M /T!

3840 G1
7T2

9216

1
7T3

46080M
1

7T4

184320M2J . ~61!

For T.0.5, which is the region where the perturbation ex-
pansion can be trusted, this always pushes the spacetime to-
wards greater isotropy.

The massless vector field perturbation to the anisotropy is

da5
1

p~2M2T!2H 2
19M5

24T3 1
211M4

360T2 2
97M3

360T
1

343M2

1440

2MTF 451

5760
1

ln~2M /T!

480 G1
T2

1152
1

T3

5760M

1
T4

23040M2J ~62!

and pushes towards anisotropy for all values ofT in the
interior.

The impact of massive fields of varying spin can be con-
sidered as well. For the massive scalar field

da5
1

pm2H M4

T6 F 47

360
2

3j

5 G1
M3

T5 F 113

6048
2

j

12G
1

M2

T4 F 113

15120
2

j

240G1
M

T3F 113

40320
2

j

80G
1

1

T2F 113

120960
2

j

240G1
1

MTF 113

483840
2

j

960G J ,

~63!

wherem is the effective field mass defined in Eq.~32!. Simi-
lar to the case of the massless scalar field, the exact sign of
the perturbation depends on the value of the scalar curvature
coupling. Whenj.1223/5544, the presence of the field
makes the spacetime more anisotropic, and whenj,47/216
the push is always towards isotropy. As shown in Fig. 2,
there exists a range of values 47/216,j,1223/5544 over
which some interior regions are isotropized and others are
not. As before, values ofj andT above the solid line have
da,0 and the spacetime tends towards anisotropy. For val-
ues below the solid line,da.0, and the tendency is towards
isotropy. Both minimal and conformal coupling fall within
this regime.

The perturbation due to a massive spinor field is

da5
1

pm2H M4

T6

7

90
1

M3

T5

113

1512
1

M2

T4

13

3780
1

M

T3

13

10080

1
1

T2

13

30240
1

1

MT

13

120960J , ~64!

which is manifestly positive for all values ofT, and hence
decreases the anisotropy.

Similarly, the massive vector field perturbation to the an-
isotropy is

FIG. 1. The curve represents zero perturbation to the anisotropy
of the interior for a massless scalar field as a function of the coor-
dinateT and the curvature couplingj. Above the curve, the pertur-
bations due to the scalar field make the spacetime more anisotropic,
and below the curve they make the spacetime more isotropic. As
T→0, j approaches 5/36 on the curve. AsT→2M , j approaches
12/55.

FIG. 2. The curve represents zero perturbation to the anisotropy
of the interior for a massive scalar field as a function of the coor-
dinateT and the curvature couplingj. Above the curve, the pertur-
bations make the spacetime more anisotropic, and below the curve
they make the spacetime more isotropic. AsT→0, j approaches
47/216 on the curve. AsT→2M , j approaches 1223/5544.
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da52
1

pm2H M4

T6

5

24
1

M3

T5

55

2016
1

M2

T4

11

1008
1

M

T3

11

2688

1
1

T2

11

8064
1

1

MT

11

32256J , ~65!

which is manifestly negative for allT, and so always tends to
increase the anisotropy.

VI. APPROACHING THE FINAL SINGULARITY

Ever since it was realized that singularities could not be
avoided in physically plausible spacetimes, quantum effects
have been invoked as the physical instrument which might
restore regularity to spacetime, by banishing singular behav-
ior. While it is impossible for a perturbative analysis to de-
termine whether quantum effects will eradicate~or
strengthen! the singularity, it is possible to determine how
the growth of curvature as one approaches the singularity is
initially affected by the semiclassical perturbation, before the
semiclassical correction grows so large that the perturbative
approach becomes invalid.

The simplest way to see the effect of quantized fields on
the growth of curvature as one approaches the singularity is
to examine the perturbations of curvature scalars. One such
scalar is the Kretschmann scalar, which for unperturbed
Schwarzschild is

KSch5RabmnRabmn5
48M2

T6
. ~66!

The Kretschmann scalar is perfectly well behaved near the
horizonT52M , but diverges strongly, asT26, asT→0.

EvaluatingK to first order ine for the metric of Eq.~36!
will yield

K5KSch1edK. ~67!

The first order correction to the Kretschmann scalar can be
written in terms of the perturbation functionsh ands as

dK5
8

T3F212h
M2

T3 12h
M

T2 13h8
M2

T2 2h8
M

T
25s8

M2

T2

1s8
M

T
12s9

M2

T
2s9M G , ~68!

where primes denote differentiation with respect toT.
In general the perturbation to the Kretschmann scalar di-

verges more strongly that the classical scalar, namely asT29

for massless field perturbations and asT212 for massive field
perturbations. On this basis, one might expect that quantum
effects always increase the rate of curvature growth,
strengthening the singularity. However, it must be kept in
mind that the perturbed metric and curvature are only valid
in the region where the deviation from the classical
Schwarzschild metric is small. Precisely where~for what
value ofT) the perturbed metric becomes a poor approxima-
tion to a full self-consistent solution depends on a number of
factors, including the mass of the black hole. It is clear,
however, that the perturbed metric can never be valid all the
way down to the singularity atT50. Thus, questions about

whether the singularity is ultimately strengthened or weak-
ened, or even removed, by quantum effects cannot be an-
swered definitively within the perturbative approach em-
ployed here.

In order to gain insight into whether the quantum effects
associated with the different fields would tend to strengthen
or weaken the singularity, we examine the direction in which
the perturbed Kretschmann scalar initially deviates from the
classical value, at largeT, where the perturbed metric is most
valid. If the sign ofdK is positive, the initial rate of growth
of curvature as one approaches the singularity will be
strengthened. IfdK is negative, then the initial rate of growth
of curvature will be weakened when compared to the classi-
cal metric. We consider the sign of the perturbation for all
possible values ofT, since one cannot say that the perturba-
tion becomes invalid at a particular value ofT without addi-
tional information about a particular black hole. However,
our results are certainly only valid in the domain where
udKu!uKu.

The perturbation toKSch in the presence of a massless
scalar field is

dK5
768p

lT4 H M5

T5 @204811920j#2
M4

T4 @4002960j#

2
M3

T3 @2402480j#1
M2

T2 @162720j248ln~2M /T!#

112
M

T
11J . ~69!

The sign ofdK depends on the value of the scalar curvature
coupling,j. Figure 3 shows a plot of the curvature coupling
j vs T over the interior. The solid line represents values ofj
andT for which dK50. For points below the solid line, the
perturbation to the Kretschmann scalar is negative, and for
values above the line the perturbation is positive. For all

FIG. 3. The curve represents zero perturbation to the
Kretschmann scalar for a massless scalar field as a function of the
coordinateT and the curvature couplingj. Above the curve, the
perturbations are positive, increasing the rate of curvature growth,
and below the curve the perturbations are negative, decreasing the
growth of curvature relative to the classical solution.
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non-negative values of the curvature coupling, the contribu-
tion is positive, and hence curvature grows faster than in the
unperturbed metric.

The massless spinor field perturbsKSch by

dK5
1344p

lT4 H 9536

7

M5

T5 2
3120

7

M4

T4 2
1760

7

M3

T3

2
M2

T2 F368

7
1

336

7
ln~2M /T!G1

84

7

M

T
11J . ~70!

The perturbation of Eq.~70! changes sign in the interior,
yielding a negative contribution to the Kretschmann scalar
for T.1.479M , and a positive contribution to the
Kretschmann scalar forT,1.479M . Whether the perturba-
tion strengthens or weakens the growth of curvature thus
depends on the value ofT at which the perturbed metric
becomes unreliable.

The massless vector field perturbation to the Kretschmann
scalar is

dK5
1536p

lT4 H 14528
M5

T5 21680
M4

T4 14960
M3

T3

2
M2

T2 @1664148ln~2M /T!#112
M

T
11J , ~71!

which is positive for all values ofT in the interior; the mass-
less vector field thus seems to strengthen the growth of cur-
vature as the singularity is approached.

Similar considerations can be given to massive fields. In
the case of the massive scalar field

dK5
1

5040pm2T6H 2
M6

T6 @2112232256j#

22304
M5

T5 11132504jJ . ~72!

As in the massless scalar field case, the exact sign of the
perturbation depends on the scalar curvature coupling. Fig-
ure 4 shows a plot of the curvature couplingj vs T over the
interior. Values ofj andT below the solid line yielddK,0.
For points above the solid line,dK.0. The minimally
coupled massive scalar field weakens the growth of curvature
over most of the interior, but near the horizon, for
T.1.973M , the curvature is strengthened. For the confor-
mally coupled scalar field, the rate of curvature growth is
always greater than in the unperturbed Schwarzschild metric.

For the massive spinor field

dK5
1

1260pm2T6H 25952
M6

T6 12304
M5

T5 113J , ~73!

which is negative for all interior values of the coordinateT;
hence the massive spinor field softens the approach to the
singularity, decreasing the rate of increase of the curvature.

In contrast, the massive vector field has

dK5
1

1680pm2T6H 8640
M6

T6 22304
M5

T5 255J , ~74!

which is positive for all values ofT in the interior; hence the
massive vector field strengthens the growth of curvature as
the singularity is approached.

VII. DISCUSSION AND SUMMARY

In this paper we have calculated the linearized perturba-
tions of the Schwarzschild black hole interior due to a col-
lection of quantized matter fields. The stress-energy tensor of
the matter fields has been described using analytic approxi-
mations. For massless fields, we have used the approxima-
tions of Page, Brown, and Ottewill@20# for the spinor field,
the approximation of Jensen and Ottewill@28# for the vector
field, and that of Anderson, Hiscock, and Samuel@22# for the
scalar field. Massive fields have been treated using the
DeWitt-Schwinger approximation, as developed by Frolov
and Zel’nikov@24# and Anderson, Hiscock, and Samuel@22#.

These calculations provide virtually all of the useful in-
formation about semiclassical effects in the interior of a
black hole that can be obtained using the various analytical
approximations. One could attempt to construct fully self-
consistent solutions to the semiclassical equations using the
DeWitt-Schwinger approximation for massive fields or the
approximations of Frolov and Zel’nikov@21# or Anderson,
Hiscock, and Samuel@22# for massless fields. However, se-
rious problems arise in such calculations. For massless fields
the analytical approximations diverge logarithmically on the
event horizon in any static non-Ricci-flat spacetime. Numeri-
cal computations of the stress-energy tensor in Reissner-
Nordström spacetimes@22,29# indicate that these diver-
gences are not real. They are simply an indication that it is
only for Schwarzschild spacetime that the analytical approxi-
mations are valid near the event horizon. For massive fields
the DeWitt-Schwinger approximation gives no divergent be-
havior on the event horizon of any black hole. However, this
approximation is valid only in the limit that the Compton
wavelength of the field is much smaller than the radius of
curvature of the spacetime. Thus the best that can be done
when using the DeWitt-Schwinger approximation is to solve
the semiclassical equations perturbatively, in which case the

FIG. 4. The curve represents zero perturbation to the
Kretschmann scalar for a massive scalar field as a function of the
coordinateT and the curvature couplingj. Above the curve, the
perturbations to Kretschmann are positive, and below the curve the
perturbations are negative.
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first order term is definitely the most important. Therefore, it
will be necessary to numerically compute the stress-energy
tensor to study semiclassical interior effects beyond the level
of linear perturbation theory.

We have addressed the question of whether anisotropy is
dissipated in the interior by treating the black hole interior as
an anisotropic, homogeneous cosmology and examining
whether the perturbed metric has greater or lesser anisotropy
than the background Schwarzschild metric. We find that
minimally and conformally coupled scalar fields, and the
spinor field, decrease the anisotropy as one approaches the
singularity, while vector fields increase the anisotropy. These
results are described from the point of view of the black hole
interior, which as a cosmology is a universe approaching a
final singularity. If one instead interpreted our results in
terms of the white hole portion of the Schwarzschild Penrose
diagram, then scalar and spinor fields would enhance anisot-
ropy as one moves away from the singularity, while vector
fields would reduce it. However as previously mentioned, in
this case the boundary conditions for the fields are ‘‘final’’
rather than ‘‘initial’’ conditions.

We have also examined whether there is any evidence for
the semiclassical perturbation modifying the approach to the

singularity. While in all cases the perturbed curvature ulti-
mately diverges more strongly than in the classical
Schwarzschild metric, the perturbed metric becomes an in-
valid approximation to the true semiclassical metric long be-
fore that occurs. Accordingly, within the context of pertur-
bation theory, it is impossible to determine whether quantum
effects might substantially change the character of the singu-
larity ~perhaps even eliminating it!. One can, however, ask
whether an observer approaching the final black hole singu-
larity will measure larger or smaller curvature in the per-
turbed metric than in the classical Schwarzschild case. We
find that massless fields of all spin, the conformally coupled
massive scalar and massive vector fields, generally
strengthen the singularity~curvature grows faster than in
Schwarzschild! while the massive minimally coupled scalar
and spinor fields weaken the growth of curvature in the do-
main where the perturbed metric is valid.
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