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Abstract

In real-life credit scoring applications, the case in which the class of
defaulters is under-represented in comparison to the class of non-defaulters
is a very common situation, but it has still received little attention. The
present paper investigates the suitability and performance of several resam-
pling techniques when applied in conjunction with statistical and artificial
intelligence prediction models over five real-world credit data sets, which
have artificially been modified to derive different imbalance ratios (pro-
portion of defaulters and non-defaulters examples). Experimental results
demonstrate that the use of resampling methods consistently improves the
performance given by the original imbalanced data. Besides, it is also im-
portant to note that in general, over-sampling techniques perform better than
any under-sampling approach.

Keywords: credit scoring; class imbalance; resampling; logistic regression;
support vector machine

1 Introduction

The recent world financial crisis has aroused increasing attention of banks and
financial institutions on credit risk assessment, converting this into a key task be-
cause of the heavy losses associated with wrong decisions. One major risk comes
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from the difficulty to distinguish the creditworthy applicants from those who will
probably default on repayments. In this context, credit scoring has been identi-
fied as a crucial tool to evaluate credit risk, improve cash flow, reduce possible
risks and make managerial decisions (Abrahams and Zhang 2008, Thomas et al.
2002), and one of the most popular application fields for both data mining and
operational research (Baesens et al. 2009).

In practice, the process of credit scoring can be deemed as a prediction prob-
lem where a new input sample (the credit applicant) must be categorized into
one of the predefined classes (in general, “good” applicants and “bad” applicants,
depending on how likely they are to default with their repayments) based on a
number of observed variables or attributes related to that sample. The input to the
model consists of a variety of information that describes socio-demographic char-
acteristics and economic conditions of the applicant, and the prediction method
will produce the output in terms of the applicant creditworthiness.

The most classical approaches to credit scoring are based on parametric statis-
tical models, such as discriminant analysis and logistic regression. However, most
recent research has been addressed to implement solutions with non-parametric
methods and computational intelligence techniques: decision trees, artificial neu-
ral networks, support vector machines, evolutionary algorithms, etc.

From the many comparative studies carried out (Baesens et al. 2003, Huang
et al. 2004, Xiao et al. 2006, Wang et al. 2011), it is not possible to claim the supe-
riority of a method over other competing algorithms regardless of data character-
istics. For instance, noisy samples, missing values, skewed class distribution and
attribute relevance may significantly affect the success of most prediction models.

This paper focuses on one of the data characteristics that may have most in-
fluence on the performance of classification techniques: the imbalance in class

distribution (Japkowicz and Stephen 2002, Chawla et al. 2004, He and Garcia
2009). Whilst some complexities have been widely studied in the credit scoring
literature (e.g., attribute relevance), the class imbalance problem has received rel-
atively little attention so far. Nevertheless, imbalanced class distribution naturally
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happens in credit scoring where in general, the number of observations in the class
of defaulters is much smaller than the number of cases belonging to the class of
non-defaulters (Pluto and Tasche 2006).

In this paper, we conduct an experimental study over real-life credit scoring
data sets using seven resampling algorithms to handle the class imbalance problem
and two well-established prediction models (logistic regression and support vector
machine). All techniques are evaluated in terms of their area under the ROC curve
(AUC), and then compared for statistical differences using the Friedman’s average
rank test and a post hoc test. The aim of this study is to determine whether or not
the resampling strategies are suitable to deal with the class imbalance problem,
and to which extent different levels of imbalance affect the performance of each
method.

2 Related Works

Class imbalance hinders the performance of most standard classification systems,
which assume a relatively well-balanced class distribution and equal misclassi-
fication costs (Japkowicz and Stephen 2002). The class imbalance problem oc-
curs when one class vastly outnumbers the other class, which is usually the most
important one and with the highest misclassification costs (Chawla et al. 2008).
Instances from the minority and majority classes are often referred to as positive
and negative, respectively.

2.1 Class Imbalance in Credit Scoring

As already mentioned, imbalanced class distribution happens in many credit scor-
ing applications. For example, it is common to find that defaulters constitute
less than 10% of the database. This is the main reason why the class imbalance
problem has attracted growing attention in the literature, both to detect fraudulent
financial activities and to predict creditworthiness of credit applicants.
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In the credit scoring domain, research has mainly focused on analyzing the
behavior of prediction models, showing that the performance on the minority
class drops down significantly as the imbalance ratio increases (Hand and Vin-
ciotti 2003, Kennedy et al. 2010, Bhattacharyya et al. 2011, Brown and Mues
2012). However, only a few works have been addressed to design solutions for
imbalanced credit data sets. For example, Vinciotti and Hand (2003) introduced a
modification to straightforward logistic regression by taking into account the mis-
classification costs when the probability estimates are made. Huang et al. (2006)
proposed two strategies for classification and cleaning of skewed credit data. One
method involves randomly selecting instances to balance the proportion of ex-
amples in each class, whereas the second method consists of combining the ID3
decision tree and the PRISM filter.

An algorithmic level solution corresponds to the proposal by Yao (2009), who
carried out a systematic comparative study on three weighted classifiers: C4.5
decision tree, support vector machine and rough sets. The experiments over two
credit scoring data sets showed that the weighted methods outperform those stan-
dard classifiers in terms of type-I error. Within the PAKDD’2009 data mining
competition, Xie et al. (2009) proposed an ensemble of logistic regression and
AdaBoost with the aim of optimizing the AUC for a highly imbalanced credit
data set. In the same direction of combining classifiers, Florez-Lopez (2010)
employed several cooperative strategies (simple and weighted voting) based on
statistical models and computational intelligence techniques in combination with
bootstrapping to handle the imbalance problem.

Kennedy et al. (2010) explored the suitability and performance of various one-
class classifiers for several imbalanced credit scoring problems with varying levels
of imbalance. The experimental results suggest that the one-class classifiers per-
form especially well when the minority class constitutes 2% or less of the data,
whereas the two-class classifiers are preferred when the minority class represents
at least 15% of the data. Tian et al. (2010) proposed a new method based on the
support vector domain description model, showing that this can be effective in
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ranking and classifying imbalanced credit data.
An exhaustive comparative study of various classification techniques when

applied to skewed credit data sets was carried out by Brown and Mues (2012).
They progressively increased the levels of class imbalance in each of five real-
life data sets by randomly under-sampling the minority class of defaulters, so as
to identify to what extent the predictive power of each technique was adversely
affected. The results showed that traditional models, such as logistic regression
and linear discriminant analysis, are fairly robust to imbalanced class sizes.

3 Resampling Methods

Much work has been done to deal with the class imbalance problem, at both data
and algorithmic levels. At the data level, the most popular strategies consist of
applying different forms of resampling to change the class distribution of the data.
This can be done by either over-sampling the minority class or under-sampling the
majority class until both class are approximately equally represented.

Both data level solutions present several drawbacks because they artificially
alter the original class distribution. Whilst under-sampling may result in throw-
ing away potentially useful information about the majority class, over-sampling
worsens the computational burden of some learning algorithms and creates noise
that could result in a loss of performance (Barandela et al. 2003).

At the algorithmic level, solutions include internally biasing the discrimination-
based process, assigning distinct costs to the classification errors and learning
from one class. Conclusions about what is the best solution for the class im-
balance problem are divergent. However, the data level methods are the most
investigated because they are independent of the underlying classifier and can be
easily implemented for any problem. Hence, the present study will concentrate on
a number of resampling strategies.
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3.1 Over-sampling

The simplest strategy to expand the minority class corresponds to random over-
sampling, that is, a non-heuristic method that balances the class distribution through
the random replication of positive examples. Nevertheless, this method may in-
crease the likelihood of overfitting since it makes exact copies of the minority
class instances.

In order to avoid overfitting, Chawla et al. (2002) proposed a technique, called
Synthetic Minority Over-sampling TEchnique (SMOTE), to up-size the minority
class. Instead of merely replicating cases belonging to the minority class, this
algorithm generates artificial examples from the minority class by interpolating
existing instances that lie close together. It first finds the k nearest neighbors
belonging to the minority class for each positive example and then, the synthetic
examples are generated in the direction of some or all of those nearest neighbors.
SMOTE allows the classifier to build larger decision regions that contain nearby
instances from the minority class. Depending upon the amount of over-sampling
required, a number of neighbors from the k nearest neighbors are randomly chosen
(in the experiments reported in the original paper, k was set to 5). When, for
example, the amount of over-sampling needed is 200%, only two neighbors from
the k nearest neighbors are chosen and then one synthetic prototype is generated
in the direction of each of these two neighbors.

Although SMOTE has proved to be an effective tool for handling the class im-
balance problem, it may overgeneralize the minority class as it does not take care
of the distribution of majority class neighbors. As a result, SMOTE generation
of synthetic examples may increase the overlapping between classes (Maciejew-
ski and Stefanowski 2011). Numerous modifications to the original SMOTE have
been proposed in the literature, most of them pursuing to determine the region in
which the positive examples should be generated. Thus, the Safe-Level SMOTE
(SL-SMOTE) algorithm (Bunkhumpornpat et al. 2009) calculates a “safe level”
coefficient (sl) for each example from the minority class, which is defined as the
number of other minority class instances among its k neighbors. If the coefficient
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sl is equal or close to 0, such an example is considered as noise; if sl is close to k,
then this example may be located in a safe region of the minority class. The idea
is to direct the generation of new synthetic examples close to safe regions.

On the other hand, Batista et al. (2004) proposed a methodology that combines
SMOTE and data cleaning, with the aim of reducing the possible overlapping
introduced when the synthetic examples from the minority class are generated.
In order to create well-defined classes, after over-sampling the minority class by
means of SMOTE, the Wilson’s editing algorithm (Wilson 1972) is applied to
remove any example (either positive or negative) that is misclassified by its three
nearest neighbors. This method is here called SMOTE+WE.

3.2 Under-sampling

Random under-sampling aims at balancing the data set through the random re-
moval of examples from the majority class. Despite its simplicity, it has empiri-
cally been shown to be one of the most effective resampling methods. However,
the major problem of this technique is that it may discard data potentially im-
portant for the prediction process. In order to overcome this limitation, other
methods have been designed to provide a more intelligent selection strategy. For
example, Kubat and Matwin (1997) proposed the One-Sided Selection technique
(OSS), which selectively removes only those negative instances that are redundant
or noisy (majority class examples that border the minority class). The border ex-
amples are detected by using the concept of Tomek links (Tomek 1976), whereas
the redundant cases (those that are distant from the decision boundary) are dis-
covered by means of Hart’s condensing (Hart 1968).

Laurikkala (2001) introduced a new algorithm called Neighborhood CLeaning
rule (NCL) that operates in a similar fashion as OSS. In this case, Wilson’s editing
is used to remove majority class examples whose class label differs from the class
of at least two of its three nearest neighbors. Besides, if a positive instance is
misclassified by its three nearest neighbors, then the algorithm also eliminates the
neighbors that belong to the majority class.
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A quite different alternative corresponds to under-Sampling Based on Cluster-
ing (SBC) (Yen and Lee 2006), which rests on the idea that there may exist differ-
ent clusters in a given data set, and each cluster may have distinct characteristics
depending on the ratio of the number of minority class examples to the number
of majority class examples in the cluster. Thus the SBC algorithm first gathers all
examples in the data set into some clusters, and then determines the number of
majority class examples that will be randomly picked up. Finally, it combines the
selected majority class instances and all the minority class examples to obtain a
resampled data set.

4 Experiments

The aim of the experiments here carried out is to evaluate the performance of
different under and over-sampling algorithms and investigate to what extent the
behavior of each technique is affected by different levels of imbalance. On the
other hand, we also analyze the suitability of each resampling method in function
of the type of classifier when addressing the class imbalance problem. To this end,
both statistical and artificial intelligence prediction models will be compared.

The resampling algorithms used in the experiments are the over-sampling
and under-sampling techniques previously described in Section 2, that is, ran-
dom over-sampling (ROS), SMOTE, SL-SMOTE, SMOTE+WE, random under-
sampling (RUS), OSS, NCL, and SBC. The classification methods correspond to
two well-known models suitable for credit scoring: logistic regression (logR) and
support vector machine (SVM) with a linear kernel. All resampling techniques
and both prediction models have been implemented with the KEEL software (Al-
calá-Fdez et al. 2009), using their default parameters settings.

4.1 Description of the Experimental Databases

Five real-world credit data sets have been taken to test the performance of the
strategies investigated in the present paper. The widely-used Australian, German
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and Japanese data sets are from the UCI Machine Learning Database Repository
(http://archive.ics.uci.edu/ml/). The UCSD data set corresponds
to a reduced version of a database used in the 2007 Data Mining Contest organized
by the University of California San Diego and Fair Isaac Corporation. The Iranian
data set (Sabzevari et al. 2007) comes from a modification to a corporate client
database of a small private bank in Iran.

Table 1: Some characteristics of the data sets used in the experiments
Data set (iRatio) # Attributes # Good # Bad

Australian (1:4) 14 307 77
(1:6) 51
(1:8) 38

(1:10) 31
(1:12) 26
(1:14) 22

German (1:4) 24 700 175
(1:6) 117
(1:8) 88

(1:10) 70
(1:12) 58
(1:14) 50

Japanese (1:4) 15 296 74
(1:6) 49
(1:8) 37

(1:10) 30
(1:12) 25
(1:14) 21

UCSD (1:4) 38 1836 459
(1:6) 306
(1:8) 230

(1:10) 184
(1:12) 153
(1:14) 131

Iranian (1:19) 27 950 50

As we are interested in analyzing the impact of different levels of class im-
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balance on resampling and classification algorithms, each original set has been
altered by randomly under-sampling the minority class in order to construct six
data sets with varying imbalance ratios (the ratio of the number of minority class
examples to the number of majority class examples), iRatio = {1:4, 1:6, 1:8,
1:10, 1:12, 1:14}. Table 1 reports a summary of the main characteristics of the
benchmarking data sets. As can be seen, the Iranian data set has not been modified
because of its extremely high imbalance ratio, and it may be interesting to study
the behavior of the resampling techniques under this hard condition. Therefore,
we have obtained a total number of 25 data sets for the experiments.

4.2 Experimental Protocol

The standard way to assess credit scoring systems is to use a holdout sample
since large sets of past applicants are usually available. However, there are sit-
uations in which data are too limited to build an accurate scorecard and there-
fore, other strategies have to be used in order to obtain a good estimate of the
classification performance. The most common way around this corresponds to
cross-validation (Thomas et al. 2002, Ch. 7).

Accordingly, a five-fold cross-validation method has been adopted for the
present experiments: each data set in Table 1 has been randomly divided into five
stratified parts of equal (or approximately equal) size. For each fold, four blocks
have been pooled as the training data, and the remaining part has been employed
as an independent test set. Ten repetitions have been run for each trial, giving a
total of 50 pairs of training and test sets. Each resampling technique has been
applied to each training set, thus obtaining the resampled data sets that have then
been used to build the prediction models (logR and SVM). The non-preprocessed
training sets have also been employed for model construction. The results from
classifying the test samples have been averaged across the 50 runs.
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4.3 Evaluation Criteria

Standard performance evaluation criteria in the fields of credit soring include ac-
curacy, error rate, Gini coefficient, Kolmogorov-Smirnov statistic, mean squared
error, area under the ROC curve, type-I error and type-II error (Thomas et al. 2002,
Yang et al. 2004, Hand 2005, Abdou and Pointon 2011). For a two-class problem,
most of these metrics can be easily derived from a 2× 2 confusion matrix as that
given in Table 2, where each entry (i, j) contains the number of correct/incorrect
predictions. For consistency with previous works in the topic of performance mea-
sures, the positive and negative classes correspond to bad and good applicants (or
credit risk), respectively.

Table 2: Confusion matrix for a two-class problem
Predicted positive Predicted negative

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

Most credit scoring applications often employ the accuracy (or the error rate)
as the criterion for performance evaluation. It represents the proportion of the
correctly (or wrongly) classified cases (good and bad) on a particular data set.
However, empirical and theoretical evidences show that this measure is strongly
biased with respect to data imbalance and proportions of correct and incorrect
predictions (Provost and Fawcett 1997). Besides, the accuracy ignores the cost of
different error types (bad applicants being predicted as good, or vice versa).

To deal with the class imbalance problem in credit scoring applications, the
area under the ROC curve (AUC) has been suggested as an appropriate perfor-
mance evaluator without regard to class distribution or misclassification costs (Bae-
sens et al. 2003) and correspondingly, this has been the evaluation measure adopted
for the experiments. For a binary problem, the AUC criterion defined by a single
point on the ROC curve is also referred to as balanced accuracy (Sokolova and
Lapalme 2009):
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AUC =
sensitivity + specificity

2
(1)

where sensitivity = TP
TP+FN

measures the percentage of positive examples that
have been predicted correctly, whereas specificity = TN

TN+FP
corresponds to the

percentage of negative instances predicted as negative.

4.4 Statistical Significance Tests over Multiple Data Sets

Probably, the most common way to compare two or more classifiers over var-
ious data sets is the Student’s paired t-test, which checks whether the average
difference in their performance over the data sets is significantly different from
zero. However, this appears to be conceptually inappropriate and statistically un-
safe because parametric tests are based on the usual assumptions of independence,
normality and homogeneity of variance, which are often violated due to the nature
of the problems (Demšar 2006, Zar 2009, Garcı́a et al. 2010).

In general, the non-parametric tests should be preferred over the parametric
ones because they do not assume normal distributions or homogeneity of variance.
In this work, we have adopted the Friedman test to determine whether there exist
significant differences among the strategies. The process starts by ranking the
algorithms for each data set independently according to the AUC results: as there
are nine competing strategies, the ranks for each data set will be from 1 (best) to 9
(worst). Then the average rank of each algorithm across all data sets is computed.
Under the null-hypothesis, which states that all strategies are equivalent and so
their average ranks should be equal, the Friedman statistic is distributed according
to the χ2

F distribution with K − 1 degrees of freedom, being K the number of
algorithms.

The Friedman test only can detect significant differences over the whole set
of comparisons. For this reason, if the null-hypothesis of equivalence of average
ranks is rejected, we can then proceed with a post hoc test. In particular, the
Nemenyi test, which is analogous to the Tukey test for ANOVA, states that the
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performances of two or more algorithms are significantly different if their average
ranks are at least as great as their critical difference (CD) with a given level of
significance (α):

CD = qα

√
K(K + 1)

6N
(2)

where N denotes the number of data sets and qα is a critical value based on the
Studentized range statistic divided by

√
2 (Hochberg and Tamhane 1987, Demšar

2006).

5 Results and Discussion

To better understand the effect of the class imbalance ratio on the performance of
the eight resampling algorithms using the logR and SVM models, we have divided
the data sets into two groups: strongly imbalanced databases (iRatio ≥ 10) and
those with a low/moderate imbalance (iRatio < 10).

5.1 Low/Moderate Imbalance Ratio

Tables 3 and 4 report the AUC values for the data sets with a low/moderate imbal-
ance ratio when using the resampling techniques with the logistic regression and
SVM classification models, respectively. The Friedman average ranking of the al-
gorithms (K = 9) over the data sets (N = 12) at a significance level of α = 0.05

is also provided for each classifier, showing that the prediction results using the
resampled sets are better than those with the original imbalanced data (except for
the SBC algorithm, which achieves the worst AUC values independently of the
classifier used).

In general, the over-sampling algorithms outperform the under-sampling tech-
niques, what can be seen by either analyzing the average rankings or comparing
the AUC of each algorithm over each data set. The best resampling methods corre-
spond to SMOTE+WE, ROS and SMOTE, both with logistic regression and with
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Table 3: AUC values over the data sets with low/moderate imbalance using logR
Dataset Imbalanced RUS OSS NCL SBC ROS SMOTE SMOTE+WE SL-SMOTE

Australian (1:4) 0.877 0.860 0.831 0.882 0.559 0.882 0.883 0.885 0.877
(1:6) 0.796 0.817 0.820 0.869 0.566 0.863 0.861 0.871 0.871
(1:8) 0.845 0.752 0.771 0.848 0.500 0.860 0.856 0.870 0.855

German (1:4) 0.611 0.709 0.717 0.710 0.676 0.735 0.723 0.729 0.716
(1:6) 0.608 0.688 0.667 0.713 0.662 0.705 0.706 0.721 0.700
(1:8) 0.554 0.686 0.705 0.657 0.643 0.719 0.733 0.753 0.718

Japanese (1:4) 0.869 0.864 0.810 0.859 0.793 0.871 0.871 0.876 0.878
(1:6) 0.825 0.818 0.827 0.855 0.679 0.874 0.877 0.852 0.864
(1:8) 0.764 0.816 0.804 0.842 0.815 0.826 0.873 0.867 0.860

UCSD (1:4) 0.728 0.800 0.793 0.807 0.700 0.810 0.802 0.806 0.794
(1:6) 0.670 0.826 0.807 0.802 0.669 0.812 0.800 0.799 0.785
(1:8) 0.615 0.787 0.754 0.774 0.657 0.814 0.805 0.805 0.788

Average ranking 7.708 6.000 6.333 4.458 8.500 2.667 2.917 2.333 4.083

SVM classifiers. It is also interesting to note that these algorithms usually perform
better than the original imbalanced data (without resampling) even with a higher
imbalance ratio; for example, in Table 3 the AUC using SMOTE over German
(1:8) is 0.733, whereas the AUC over the original German (1:4) is 0.611. One can
see that in many cases, this effect also happens when comparing over-sampling
and under-sampling.

When comparing the results given by logR in Table 3 with those of SVM in
Table 4, it seems that the logistic regression model consistently performs better
than the SVM approach, independently of the imbalance ratio. This finding is in
agreement with the conclusions drawn in some previous studies (Baesens et al.
2003, Xiao et al. 2006, Kennedy et al. 2010).

A Nemenyi post hoc test (α = 0.05) has also been applied to report any sig-
nificant differences between all pairs of algorithms. The results of this test are
then depicted by significance diagrams (Lessmann et al. 2008), plotting the Fried-
man average ranks and the critical difference tail. The diagram plots resampling
algorithms against average rankings, whereby all methods are sorted according to
their ranks. The line segment to the right of each algorithm represents the critical
difference (in this case, CD = 3.468). The vertical dotted line indicates the end
of the best performing method. Therefore, all algorithms right to this line perform
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Table 4: AUC values over the data sets with low/moderate imbalance using SVM
Dataset Imbalanced RUS OSS NCL SBC ROS SMOTE SMOTE+WE SL-SMOTE

Australian (1:4) 0.891 0.891 0.891 0.891 0.843 0.891 0.891 0.891 0.891
(1:6) 0.852 0.869 0.872 0.872 0.833 0.871 0.872 0.872 0.872
(1:8) 0.863 0.852 0.845 0.846 0.819 0.889 0.854 0.851 0.856

German (1:4) 0.510 0.712 0.706 0.716 0.695 0.726 0.724 0.716 0.718
(1:6) 0.500 0.701 0.690 0.701 0.650 0.688 0.707 0.702 0.706
(1:8) 0.500 0.739 0.641 0.624 0.682 0.725 0.729 0.727 0.728

Japanese (1:4) 0.888 0.888 0.888 0.888 0.580 0.888 0.888 0.888 0.888
(1:6) 0.866 0.866 0.865 0.866 0.560 0.866 0.866 0.866 0.866
(1:8) 0.862 0.867 0.875 0.875 0.766 0.874 0.870 0.875 0.875

UCSD (1:4) 0.666 0.771 0.797 0.786 0.668 0.790 0.780 0.784 0.766
(1:6) 0.500 0.774 0.770 0.759 0.635 0.779 0.770 0.778 0.753
(1:8) 0.500 0.775 0.739 0.730 0.636 0.797 0.772 0.780 0.758

Average ranking 7.083 4.625 5.167 4.875 8.333 3.500 3.708 3.667 4.042

significantly worse than the best method.
Figure 1(a) displays the significance diagram for the logR model, where the

best resampling technique has been SMOTE+WE with an average rank of 2.333.
As can be seen, this method is significantly better than using the original imbal-
anced data set or any under-sampling algorithm; only the NCL under-sampling
approach is not significantly worse than the best performing technique. Note that
even the random over-sampling algorithm with an average rank value of 2.667 is
significantly better than the imbalanced data set, OSS and SBC.

SMOTE+WE

ROS

SMOTE

SL-SMOTE

NCL

RUS

OSS

Imbalanced

SBC

 2  4  6  8  10  12

(a) Logistic regression

ROS

SMOTE+WE

SMOTE

SL-SMOTE

RUS

NCL

OSS

Imbalanced

SBC

 2  4  6  8  10  12

(b) SVM

Figure 1: Significance diagrams (CD = 3.468) for the data sets with a
low/moderate imbalance ratio
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In the case of the SVM, Figure 1(b) clearly shows that only the results of
using the imbalanced data and the SBC method are significantly worse than those
given by the best performing algorithm (random over-sampling with an average
rank of 3.500). From this, it seems that the use of a linear kernel SVM produces
non-significant differences in performance among most resampling techniques.

5.2 High Imbalance Ratio

Tables 5 and 6 provide the AUC values for the highly imbalanced data sets when
applying the logR and SVM prediction models, respectively. The Friedman aver-
age ranking of the strategies (K = 9) over the data sets (N = 13) has also been
included for each classifier. As can been seen, both under-sampling and over-
sampling methods outperform the original imbalanced data set independently of
the classifier used.

In the case of the logistic regression model, all over-sampling algorithms per-
form better than the under-sampling techniques. The best performing approach
corresponds to SMOTE+WE with an average rank of 1.846, followed by SMOTE
with 2.423 and ROS with 3.385. Although the under-sampling methods perform
worse than any over-sampling algorithm, it is worth pointing out that they still
improve the AUC values achieved when classifying with the original imbalanced
data set (this is the strategy with the highest average rank).

Focusing on the results of the SVM classifier in Table 6, one can observe
that SMOTE, ROS and SMOTE+WE are the best approaches with average ranks
of 3.039, 3.346 and 3.423, respectively. In this case, the random under-sampling
algorithm appears to be as good as those over-sampling strategies, with an average
rank of 3.346. Once again, the SBC technique and the use of the imbalanced data
set without any preprocessing correspond to the options with the highest average
ranks (7.539 and 8.077, respectively).

If we now analyze the results obtained for the highly imbalanced data sets and
those of a low/moderate imbalance ratio in Section 5.2, it is possible to notice
that the best solution to the class imbalance problem consistently corresponds
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Table 5: AUC values over the highly imbalanced data sets using logR

Dataset Imbalanced RUS OSS NCL SBC ROS SMOTE SMOTE+WE SL-SMOTE

Australian (1:10) 0.660 0.749 0.773 0.864 0.539 0.854 0.866 0.866 0.836
(1:12) 0.762 0.698 0.741 0.869 0.500 0.843 0.861 0.865 0.860
(1:14) 0.675 0.661 0.624 0.789 0.500 0.790 0.850 0.851 0.845

German (1:10) 0.528 0.664 0.655 0.630 0.611 0.697 0.708 0.724 0.696
(1:12) 0.511 0.627 0.595 0.576 0.645 0.618 0.683 0.664 0.647
(1:14) 0.535 0.699 0.616 0.570 0.599 0.657 0.674 0.670 0.641

Japanese (1:10) 0.663 0.770 0.705 0.853 0.550 0.851 0.841 0.878 0.834
(1:12) 0.681 0.708 0.709 0.756 0.822 0.778 0.832 0.874 0.849
(1:14) 0.610 0.720 0.670 0.718 0.705 0.763 0.792 0.791 0.750

UCSD (1:10) 0.605 0.800 0.766 0.768 0.559 0.802 0.799 0.800 0.769
(1:12) 0.583 0.792 0.759 0.762 0.543 0.826 0.816 0.819 0.800
(1:14) 0.600 0.781 0.718 0.756 0.500 0.832 0.821 0.828 0.788

Iranian (1:19) 0.505 0.628 0.619 0.594 0.500 0.664 0.701 0.699 0.717

Average ranking 8.077 5.346 6.846 5.462 7.846 3.385 2.423 1.846 3.769

to over-sampling, independently of employing a statistical model or an artificial
intelligence technique.

Table 6: AUC values over the highly imbalanced data sets using SVM

Dataset Imbalanced RUS OSS NCL SBC ROS SMOTE SMOTE+WE SL-SMOTE

Australian (1:10) 0.610 0.867 0.867 0.867 0.830 0.859 0.867 0.864 0.867
(1:12) 0.682 0.883 0.883 0.883 0.711 0.883 0.883 0.883 0.883
(1:14) 0.568 0.873 0.849 0.873 0.736 0.871 0.873 0.871 0.873

German (1:10) 0.500 0.696 0.635 0.585 0.640 0.694 0.709 0.717 0.679
(1:12) 0.500 0.652 0.525 0.500 0.569 0.672 0.702 0.685 0.652
(1:14) 0.500 0.696 0.565 0.496 0.618 0.674 0.671 0.700 0.649

Japanese (1:10) 0.886 0.886 0.886 0.886 0.653 0.868 0.878 0.876 0.881
(1:12) 0.568 0.825 0.763 0.830 0.573 0.878 0.863 0.861 0.829
(1:14) 0.500 0.816 0.730 0.746 0.500 0.779 0.771 0.762 0.727

UCSD (1:10) 0.500 0.777 0.711 0.711 0.500 0.796 0.773 0.776 0.752
(1:12) 0.500 0.770 0.702 0.673 0.686 0.797 0.786 0.795 0.775
(1:14) 0.500 0.793 0.639 0.628 0.500 0.813 0.792 0.794 0.778

Iranian (1:19) 0.500 0.673 0.498 0.498 0.500 0.718 0.732 0.712 0.719

Average ranking 8.077 3.346 5.962 5.885 7.539 3.346 3.039 3.423 4.385

As in the case of the results for the data sets with a low/moderate ratio, a
Nemenyi post hoc test (α = 0.05) has also been applied to report any signifi-
cant differences between all pairs of algorithms and then depicted by significance
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diagrams with a critical difference value of 3.332.
Figure 2(a) shows the significance diagram for the logistic regression model,

where the SMOTE+WE technique proves to be significantly better than using any
under-sampling algorithm or the original imbalanced data set. The rest of over-
sampling algorithms are also significantly better than OSS, SBC and the imbal-
anced sets.

SMOTE+WE

SMOTE

ROS

SL-SMOTE

RUS

NCL

OSS

SBC

Imbalanced

 2  4  6  8  10  12

(a) Logistic regression

SMOTE

ROS

RUS

SMOTE+WE

SL-SMOTE

NCL

OSS

SBC

Imbalanced

 2  4  6  8  10  12

(b) SVM

Figure 2: Significance diagrams (CD = 3.332) for the highly imbalanced data
sets

For the SVM, Figure 2(b) allows to observe that differences among the resam-
pling strategies are less significant than in the case of using logR. Nonetheless,
one can see that five methods (SMOTE, ROS, RUS, SMOTE+WE, SL-SMOTE)
perform significantly better than SBC and the original imbalanced sets.

6 Conclusions

This paper has studied a number of resampling techniques for statistical and com-
putational intelligence prediction models when addressing the class imbalance
problem. The performance of these methods has been assessed by means of the
AUC (balanced accuracy) measure, and then the Friedman statistic and the Ne-
menyi post hoc test have been applied to determine whether the differences be-
tween the average ranked performances were statistically significant. In order
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to better illustrate these statistical differences, the significance diagram for each
classifier has been analyzed.

The experiments carried out over real-world data sets with varying imbalance
ratios have demonstrated that resampling can be an appropriate solution to the
class imbalance problem in credit scoring. Also, the results have allowed to see
that over-sampling outperforms under-sampling in most cases, especially with the
logistic regression prediction model where the Nemenyi test has shown more sig-
nificant differences. Another interesting finding refers to the fact that the resam-
pling approaches have produced similar gains in performance without regard to
the imbalance ratio.

In credit scoring applications, a small increase in performance may result
in significant future savings and have important commercial implications (Hen-
ley and Hand 1997). Taking this into account, the improvement in performance
achieved by the resampling strategies may become of great importance for banks
and financial institutions. Therefore, it seems strongly advisable to face down the
imbalance problem (probably by means of an over-sampling technique) before
building the prediction model.
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