10,869 research outputs found
Report of the Higgs Working Group of the Tevatron Run 2 SUSY/Higgs Workshop
This report presents the theoretical analysis relevant for Higgs physics at
the upgraded Tevatron collider and documents the Higgs Working Group
simulations to estimate the discovery reach in Run 2 for the Standard Model and
MSSM Higgs bosons. Based on a simple detector simulation, we have determined
the integrated luminosity necessary to discover the SM Higgs in the mass range
100-190 GeV. The first phase of the Run 2 Higgs search, with a total integrated
luminosity of 2 fb-1 per detector, will provide a 95% CL exclusion sensitivity
comparable to that expected at the end of the LEP2 run. With 10 fb-1 per
detector, this exclusion will extend up to Higgs masses of 180 GeV, and a
tantalizing 3 sigma effect will be visible if the Higgs mass lies below 125
GeV. With 25 fb-1 of integrated luminosity per detector, evidence for SM Higgs
production at the 3 sigma level is possible for Higgs masses up to 180 GeV.
However, the discovery reach is much less impressive for achieving a 5 sigma
Higgs boson signal. Even with 30 fb-1 per detector, only Higgs bosons with
masses up to about 130 GeV can be detected with 5 sigma significance. These
results can also be re-interpreted in the MSSM framework and yield the required
luminosities to discover at least one Higgs boson of the MSSM Higgs sector.
With 5-10 fb-1 of data per detector, it will be possible to exclude at 95% CL
nearly the entire MSSM Higgs parameter space, whereas 20-30 fb-1 is required to
obtain a 5 sigma Higgs discovery over a significant portion of the parameter
space. Moreover, in one interesting region of the MSSM parameter space (at
large tan(beta)), the associated production of a Higgs boson and a b b-bar pair
is significantly enhanced and provides potential for discovering a non-SM-like
Higgs boson in Run 2.Comment: 185 pages, 124 figures, 55 table
High N, dry: Experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought.
Hotter, longer, and more frequent global change-type drought events may profoundly impact terrestrial ecosystems by triggering widespread vegetation mortality. However, severe drought is only one component of global change, and ecological effects of drought may be compounded by other drivers, such as anthropogenic nitrogen (N) deposition and nonnative plant invasion. Elevated N deposition, for example, may reduce drought tolerance through increased plant productivity, thereby contributing to drought-induced mortality. High N availability also often favors invasive, nonnative plant species, and the loss of woody vegetation due to drought may create a window of opportunity for these invaders. We investigated the effects of multiple levels of simulated N deposition on a Mediterranean-type shrubland plant community in southern California from 2011 to 2016, a period coinciding with an extreme, multiyear drought in the region. We hypothesized that N addition would increase native shrub productivity, but that this would increase susceptibility to drought and result in increased shrub loss over time. We also predicted that N addition would favor nonnatives, especially annual grasses, leading to higher biomass and cover of these species. Consistent with these hypotheses, we found that high N availability increased native shrub canopy loss and mortality, likely due to the higher productivity and leaf area and reduced water-use efficiency we observed in shrubs subject to N addition. As native shrub cover declined, we also observed a concomitant increase in cover and biomass of nonnative annuals, particularly under high levels of experimental N deposition. Together, these results suggest that the impacts of extended drought on shrubland ecosystems may be more severe under elevated N deposition, potentially contributing to the widespread loss of native woody species and vegetation-type conversion
Cohesion of BaReH and BaMnH: Density Functional Calculations and Prediction of (MnH Salts
Density functional calculations are used to calculate the structural and
electronic properties of BaReH and to analyze the bonding in this compound.
The high coordination in BaReH is due to bonding between Re 5 states and
states of -like symmetry formed from combinations of H orbitals in the
H cage. This explains the structure of the material, its short bond lengths
and other physical properties, such as the high band gap. We compare with
results for hypothetical BaMnH, which we find to have similar bonding and
cohesion to the Re compound. This suggests that it may be possible to
synthesize (MnH salts. Depending on the particular cation, such salts
may have exceptionally high hydrogen contents, in excess of 10 weight
Volunteerism among hospitalists and non-hospitalists at academic and community medical centers in North Carolina
Volunteerism is common in the United States, though less is known about volunteerism among medical professionals. We aimed to record and compare volunteer activities among hospitalists and non-hospitalists in academic and community centers.Includes bibliographical reference
3-D kinematic comparison of treadmill and overground running.
Studies investigating the mechanics of human movement are often conducted using the treadmill. The treadmill is an attractive device for the analysis of human locomotion. Studies comparing overground and treadmill running have analyzed discrete variables, however differences in excursion from footstrike to peak angle and range of motion during stance have yet to be examined. This study aimed to examine the 3-D kinematics of the lower extremities during overground and treadmill locomotion to determine the extent to which the two modalities differ. Twelve participants ran at 4.0m/s in both treadmill and overground conditions. 3-D angular kinematic parameters during the stance phase were collected using an eight camera motion analysis system. Hip, knee and ankle joint kinematics were quantified in the sagittal, coronal and transverse planes, then compared using paired t-tests. Of the parameters analyzed hip flexion at footstrike 12° hip range of motion 17°, peak hip flexion 12.7°, hip transverse plane range of motion 8° peak knee flexion 5° and peak ankle excursion range 6.6°, coronal plane ankle angle at toe-off 6.5° and peak ankle eversion 6.3° were found to be significantly different. These results lead to the conclusion that the mechanics of treadmill locomotion cannot be generalized to overground
Introducing a Calculus of Effects and Handlers for Natural Language Semantics
In compositional model-theoretic semantics, researchers assemble
truth-conditions or other kinds of denotations using the lambda calculus. It
was previously observed that the lambda terms and/or the denotations studied
tend to follow the same pattern: they are instances of a monad. In this paper,
we present an extension of the simply-typed lambda calculus that exploits this
uniformity using the recently discovered technique of effect handlers. We prove
that our calculus exhibits some of the key formal properties of the lambda
calculus and we use it to construct a modular semantics for a small fragment
that involves multiple distinct semantic phenomena
Techniques development for whale migration tracking
Effort leading to the completion of development and fabrication of expansible whale harnesses and whale-carried instrument pods is described, along with details of the gear. Early preparative effort for a January-February 1974 field expedition is reported
Magnetically-controlled velocity selection in a cold atom sample using stimulated Raman transitions
We observe velocity-selective two-photon resonances in a cold atom cloud in
the presence of a magnetic field. We use these resonances to demonstrate a
simple magnetometer with sub-mG resolution. The technique is particularly
useful for zeroing the magnetic field and does not require any additional laser
frequencies than are already used for standard magneto-optical traps. We verify
the effects using Faraday rotation spectroscopy.Comment: 5 pages, 6 figure
A Bayesian parameter estimation approach to pulsar time-of-arrival analysis
The increasing sensitivities of pulsar timing arrays to ultra-low frequency
(nHz) gravitational waves promises to achieve direct gravitational wave
detection within the next 5-10 years. While there are many parallel efforts
being made in the improvement of telescope sensitivity, the detection of stable
millisecond pulsars and the improvement of the timing software, there are
reasons to believe that the methods used to accurately determine the
time-of-arrival (TOA) of pulses from radio pulsars can be improved upon. More
specifically, the determination of the uncertainties on these TOAs, which
strongly affect the ability to detect GWs through pulsar timing, may be
unreliable. We propose two Bayesian methods for the generation of pulsar TOAs
starting from pulsar "search-mode" data and pre-folded data. These methods are
applied to simulated toy-model examples and in this initial work we focus on
the issue of uncertainties in the folding period. The final results of our
analysis are expressed in the form of posterior probability distributions on
the signal parameters (including the TOA) from a single observation.Comment: 16 pages, 4 figure
- …