18,949 research outputs found
Infrared observations of comets
Infrared observation are important for deducing a great deal about properties of the cometary dust surrounding the cometary nucleus. All observations in the infrared are limited to long period comets. Three features of the spectrum which seem to be present in nearly all of the comets observed are discussed. First, there is a peak in the spectrum in the near infrared and visible wavelength, which can be attributed to scattered sunlight. This feature, as expected, gets fainter as a comet recedes from the sun. The second dominant feature in the spectrum is a broad peak in the infrared which is attributed to the thermal emission of the dust in the coma. This part of the spectrum also gets dimmer as the comet gets further from the sun but, at the same time the peak of the spectrum shifts to longer wavelengths, indicating that the dust from which this radiation arises is cooling as the comets recedes. The other feature in the spectrum which is noted is the emission feature at about 10 microns attributed to emission from metallic ilicates. T.M
Discovery of 28 pulsars using new techniques for sorting pulsar candidates
Modern pulsar surveys produce many millions of candidate pulsars, far more
than can be individually inspected. Traditional methods for filtering these
candidates, based upon the signal-to-noise ratio of the detection, cannot
easily distinguish between interference signals and pulsars. We have developed
a new method of scoring candidates using a series of heuristics which test for
pulsar-like properties of the signal. This significantly increases the
sensitivity to weak pulsars and pulsars with periods close to interference
signals. By applying this and other techniques for ranking candidates from a
previous processing of the Parkes Multi-beam Pulsar Survey, 28 previously
unknown pulsars have been discovered. These include an eccentric binary system
and a young pulsar which is spatially coincident with a known supernova
remnant.Comment: To be published in Monthly Notices of the Royal Astronomical Society.
11 pages, 9 figure
The General Electric MOD-1 wind turbine generator program
The design, fabrication, installation and checkout of MOD-1, a megawatt class wind turbine generator which generates utility grade electrical power, is described. A MOD-1/MOD-1A tradeoff study is discussed
Individual aerosol particles from biomass burning in southern Africa: 2. Compositions and aging of inorganic particles
Individual aerosol particles collected over southern Africa during the SAFARI 2000 field study were studied using transmission electron microscopy and field- emission scanning electron microscopy. The sizes, shapes, compositions, mixing states, surface coatings, and relative abundances of aerosol particles from biomass burning, in boundary layer hazes, and in the free troposphere were compared, with emphasis on aging and reactions of inorganic smoke particles. Potassium salts and organic particles were the predominant species in the smoke, and most were internally mixed. More KCl particles occur in young smoke, whereas more K2SO4 and KNO3 particles were present in aged smoke. This change indicates that with the aging of the smoke, KCl particles from the fires were converted to K2SO4 and KNO3 through reactions with sulfur- and nitrogen-bearing species from biomass burning as well as other sources. More soot was present in smoke from flaming grass fires than bush and wood fires, probably due to the predominance of flaming combustion in grass fires. The high abundance of organic particles and soluble salts can affect the hygroscopic properties of biomass- burning aerosols and therefore influence their role as cloud condensation nuclei. Particles from biomass burning were important constituents of the regional hazes
IUE observations of a luminous M supergiant that exhibits intense continuum in the far ultraviolet
Observations of the late type M supergiant TV Gem (M1Iab) reveal strong UV continuum between 1200 A and 3200 A. The continuum is essentially featureless with the exception of a number of broad absorption features in the short wavelength spectra range. An absorption feature centered around 1400 A could be due to Si IV absorption found typically in spectra of middle B type stars. UV emission from this star is unexpected because earlier ground-based observations give no indication of a possible association with an early companion or circumstellar ionized nebulosity. A B9 or A1 III - IV type star approximately 2to 3 magnitudes fainter than the M star could explain the level of UV continuum observed, but a fully self consistent explanation that includes the B-V color index of TV Gem is not as yet possible. The continuum flux dependence with wavelength in the UV spectral range could be attributed to a high energy source such as an accretion disc. It is suggested TV Gem is a good candidate for HEAO-2 (Einstein) satellite observations because a high energy object in close proximity to the M star would likely be a source of soft X-ray emission
IUE observations of two late-type stars Bx Mon (M + pec) and TV Gem (M1 Iab)
The IUE observations of two late type stars BX Mon and TV Gem that reveal the emission properties in the ultraviolet of subluminous companions are discussed. Analysis of the continuum emission observed from BX Mon suggests the companion, is a middle A III star. High excitation emission lines observed between 1200 A and 2000 A that generally do not typify emission observed in either late M type variables or A type stars are also detected. It is suggested that these strong high excitation lines arise in a large volume of gas heated by nonradiation processes that could be the result of tidal interaction and mass exchange in the binary system. In contrast to stars such as BX Mon, the luminous M1 supergiant TV Gem shows unexpected intense UV continuum throughout the sensitivity range of IUE. The UV spectrum of TV Gem is characterized by intense continuum with broad absorption features detected in the short wavelength range. The analysis shows that the companion could be a B9 or A1 III-IV star. Alternate suggestions are presented for explaining the UV continuum in terms of an accretion disk in association with TV Gem
Pulsar timing analysis in the presence of correlated noise
Pulsar timing observations are usually analysed with least-square-fitting
procedures under the assumption that the timing residuals are uncorrelated
(statistically "white"). Pulsar observers are well aware that this assumption
often breaks down and causes severe errors in estimating the parameters of the
timing model and their uncertainties. Ad hoc methods for minimizing these
errors have been developed, but we show that they are far from optimal.
Compensation for temporal correlation can be done optimally if the covariance
matrix of the residuals is known using a linear transformation that whitens
both the residuals and the timing model. We adopt a transformation based on the
Cholesky decomposition of the covariance matrix, but the transformation is not
unique. We show how to estimate the covariance matrix with sufficient accuracy
to optimize the pulsar timing analysis. We also show how to apply this
procedure to estimate the spectrum of any time series with a steep red
power-law spectrum, including those with irregular sampling and variable error
bars, which are otherwise very difficult to analyse.Comment: Accepted by MNRA
IUE observations and interpretation of the symbiotic star RW Hya
The IUE observations of the high excitation symbiotic star RW Hya (gM2 + pec) are discussed. Analysis of the intense UV continuum observed between 1100 A to 2000 A suggests this star is a binary system in which the secondary is identified as a hot subdwarf with T sub eff being approximately 100,000 K. A distance to the system of 1000 pc is deduced. The UV spectrum consists of mainly semiforbidden and allowed transition lines of which the CIV (1548 A, 1550 A) emission lines are particularly strong, and UV continuum at both shorter and longer wavelengths. Strong forbidden lines seem to be absent suggesting the presence of a nebula of high densities. Tidal interaction between the red giant primary and the hot subdwarf is suggested as a likely means to form the observed nebula. RW Hya is suggested as a possible source of soft X-ray emission from material accreting onto the surface of the hot subdwarf. Detection of such emission with HEAO-B would give information if this accretion is taking place via Roche lobe overlow or via capture from a stellar wind emitted by the primary. A general discussion of elemental and ionic abundances in the nebula is also presented
- …
