1,172 research outputs found

    Is Oak Establishment in Old‐fields and Savanna Openings Context Dependent?

    Get PDF
    Multiple factors are known to influence tree seedling establishment, yet the degree to which these factors depend on each other and on spatial context is largely unknown. We examined the influence of herbaceous competition and water and nitrogen limitations on tree seedling establishment as functions of distance from trees (within‐site spatial context) and site history (between‐site spatial context; as old‐fields vs. savanna openings). We grew Quercus ellipsoidalis E.J. Hill (pin oak) and Q. macrocarpa Michx. (bur oak) seedlings for 3 years in abandoned agricultural fields and savannas in central Minnesota, USA, near and distant from adult oak trees, with and without water and nitrogen resource additions, and with and without clipping of herbaceous vegetation (reducing above‐ground competition). The strongest treatment effects were found in response to distance from trees and clipping herbaceous vegetation. Ectomycorrhizal infection, year 1 foliar N concentrations, and survival were greater in seedlings growing near vs. distant from adult trees, while clipping herbaceous vegetation increased above‐ground seedling biomass but reduced seedling heights, regardless of distance from adult trees. There were conflicting effects of resource addition, which were dependent on clipping of herbaceous vegetation and site (savanna vs. old‐field). Distance from adult trees and clipping herbaceous vegetation appear to have largely independent effects. Thus, while being near trees benefits seedlings, probably via increased mycorrhizal infection, competition from herbaceous vegetation limits seedlings regardless of distance from trees. In contrast, the effects of resource addition were more context dependent, interacting significantly with herbaceous context and site. The factors influencing seedling success can perhaps be best conceptualized as a series of largely independent environmental filters: seedlings near trees have increased mycorrhizal infection, nutrient uptake and survival, but face competition from herbaceous vegetation regardless of distance from trees. The slow encroachment of woody vegetation into old‐fields and savanna openings in this region is likely to be the result of the net cumulative effect of such filters

    Role of Boreal Vegetation in Controlling Ecosystem Processes and Feedbacks to Climate

    Get PDF
    In the field, dark respiration rates are greatest in cores from more northerly locations. This is due in part to greater amounts of dwarf shrub biomass in the more northerly cores, but also to differences in soil organic matter quality. Laboratory incubations of these soils under common conditions show some evidence for greater pools of available carbon in soils from more northerly tundra sites, although the most northerly site does not fit this pattern for reasons which are unclear at this time. While field measurements of cores transplanted among different vegetation types at the same location (Toolik Lake) show relatively small differences in whole ecosystem carbon flux, laboratory incubation of these same soils shows that there are large differences in soil respiration rates under common conditions. This is presumably due to differences in organic matter quality. Microenvironmental site factors (temperature, soil moisture, degree of anaerobiosis, etc.) may be responsible for evening out these differences in the field. These site factors, which differ with slope, aspect, and drainage within a given location along the latitudinal gradient, appear to exert at least as strong a control over carbon fluxes as do macroclimatic factors among sites across the latitudinal gradient. While our field measurements indicate that, in the short term, warming will tend to increase ecosystem losses Of CO2 via respiration more than they will increase plant gross assimilation, the degree to which different topographically-defined plant communities will respond is likely to vary

    Effect of Shear Flow on the Stability of Domains in Two Dimensional Phase-Separating Binary Fluids

    Full text link
    We perform a linear stability analysis of extended domains in phase-separating fluids of equal viscosity, in two dimensions. Using the coupled Cahn-Hilliard and Stokes equations, we derive analytically the stability eigenvalues for long wavelength fluctuations. In the quiescent state we find an unstable varicose mode which corresponds to an instability towards coarsening. This mode is stabilized when an external shear flow is imposed on the fluid. The effect of the shear is seen to be qualitatively similar to that found in experiments.Comment: 13 pages, RevTeX, 8 eps figures included. Submitted to Phys. Rev.

    Mycena species can be opportunist-generalist plant root invaders

    Get PDF
    ACKNOWLEDGEMENTS We thank Karl-Henrik Larsson and Arne Aronsen for provisions of specimens from the Natural History Museum of Oslo and help with the identification of field specimens from Svalbard. We further thank Cecilie Mathiesen and Mikayla Jacobs for technical assistance in the laboratory, Brendan J. Furneaux for valuable input to the R script, and the curators of H, TUR, and OULU. The Mycena ITS sequences originating from the specimens deposited in H, TUR, and OULU were produced as part of the Finnish Barcode of Life Project (FinBOL) funded by the Ministry of Environment, Finland (YM23/5512/2013), Otto A Malm's Donationsfond, and the Kone Foundation. We thank the European Commission (grant no. 658849) and the Carlsberg Foundation (grant no. CF18-0809) for grants to C.B. Harder that made this research possible. C.B. Harder was financed by a grant from the Danish Independent Research Fund DFF/FNU 2032-00064B (SapMyc) at the time of writing. Research Funding Carlsbergfondet. Grant Number: CF18-0809 Danish Independent Research Fund. Grant Number: 2032-00064B European Commission. Grant Number: 658849 Ministry of Environment, Finland. Grant Number: YM23/5512/2013Peer reviewedPublisher PD

    Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species.

    Get PDF
    The mass loss of litter mixtures is often different than expected based on the mass loss of the component species. We investigated if the identity of neighbour species affects these litter-mixing effects. To achieve this, we compared decomposition rates in monoculture and in all possible two-species combinations of eight tree species, widely differing in litter chemistry, set out in two contrasting New Zealand forest types. Litter from the mixed-species litter bags was separated into its component species, which allowed us to quantify the importance of litter-mixing effects and neighbour identity, relative to the effects of species identity, litter chemistry and litter incubation environment. Controlling factors on litter decomposition rate decreased in importance in the order: species identity (litter quality) >> forest type >> neighbour species. Species identity had the strongest influence on decomposition rate. Interspecific differences in initial litter lignin concentration explained a large proportion of the interspecific differences in litter decomposition rate. Litter mass loss was higher and litter-mixture effects were stronger on the younger, more fertile alluvial soils than on the older, less-fertile marine terrace soils. Litter-mixture effects only shifted percentage mass loss within the range of 1.5%. There was no evidence that certain litter mixtures consistently showed interactive effects. Contrary to common theory, adding a relatively fast-decomposing species generally slowed down the decomposition of the slower decomposing species in the mixture. This study shows that: (1) species identity, litter chemistry and forest type are quantitatively the most important drivers of litter decomposition in a New Zealand rain forest; (2) litter-mixture effects—although statistically significant—are far less important and hardly depend on the identity and the chemical characteristics of the neighbour species; (3) additive effects predominate in this ecosystem, so that mass dynamics of the mixtures can be predicted from the monocultures

    Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 97 (2009): 183-194, doi:10.1007/s10533-009-9365-1.Uptake of nitrogen (N) via root-mycorrhizal associations accounts for a significant portion of total N supply to many vascular plants. Using stable isotope ratios (δ15N) and the mass balance among N pools of plants, fungal tissues, and soils, a number of efforts have been made in recent years to quantify the flux of N from mycorrhizal fungi to host plants. Current estimates of this flux for arctic tundra ecosystems rely on the untested assumption that the δ15N of labile organic N taken up by the fungi is approximately the same as the δ15N of bulk soil. We report here hydrolysable amino acids are more depleted in 15N relative to hydrolysable ammonium and amino sugars in arctic tundra soils near Toolik Lake, Alaska, USA. We demonstrate, using a case study, that recognizing the depletion in 15N for hydrolysable amino acids (δ15N = -5.6 ‰ on average) would alter recent estimates of N flux between mycorrhizal fungi and host plants in an arctic tundra ecosystem.This study was funded by NSF-DEB-0423385and NSF-DEB 0444592. Additional support was provided by Arctic Long Term Ecological Research program, funded by National Science Foundation, Division of Environmental Biology

    Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis

    Get PDF
    Rapid antibiotic susceptibility testing of Mycobacterium tuberculosis is of paramount importance as multiple- and extensively- drug resistant strains of M. tuberculosis emerge and spread. We describe here a virus-based assay in which fluoromycobacteriophages are used to deliver a GFP or ZsYellow fluorescent marker gene to M. tuberculosis, which can then be monitored by fluorescent detection approaches including fluorescent microscopy and flow cytometry. Pre-clinical evaluations show that addition of either Rifampicin or Streptomycin at the time of phage addition obliterates fluorescence in susceptible cells but not in isogenic resistant bacteria enabling drug sensitivity determination in less than 24 hours. Detection requires no substrate addition, fewer than 100 cells can be identified, and resistant bacteria can be detected within mixed populations. Fluorescence withstands fixation by paraformaldehyde providing enhanced biosafety for testing MDR-TB and XDR-TB infections. © 2009 Piuri et al

    Trauma history and depression predict incomplete adherence to antiretroviral therapies in a low income country.

    Get PDF
    As antiretroviral therapy (ART) for HIV becomes increasingly available in low and middle income countries (LMICs), understanding reasons for lack of adherence is critical to stemming the tide of infections and improving health. Understanding the effect of psychosocial experiences and mental health symptomatology on ART adherence can help maximize the benefit of expanded ART programs by indicating types of services, which could be offered in combination with HIV care. The Coping with HIV/AIDS in Tanzania (CHAT) study is a longitudinal cohort study in the Kilimanjaro Region that included randomly selected HIV-infected (HIV+) participants from two local hospital-based HIV clinics and four free-standing voluntary HIV counselling and testing sites. Baseline data were collected in 2008 and 2009; this paper used data from 36 month follow-up interviews (N = 468). Regression analyses were used to predict factors associated with incomplete self-reported adherence to ART. INCOMPLETE ART ADHERENCE WAS SIGNIFICANTLY MORE LIKELY TO BE REPORTED AMONGST PARTICIPANTS WHO EXPERIENCED A GREATER NUMBER OF CHILDHOOD TRAUMATIC EVENTS: sexual abuse prior to puberty and the death in childhood of an immediate family member not from suicide or homicide were significantly more likely in the non-adherent group and other negative childhood events trended toward being more likely. Those with incomplete adherence had higher depressive symptom severity and post-traumatic stress disorder (PTSD). In multivariable analyses, childhood trauma, depression, and financial sacrifice remained associated with incomplete adherence.\ud This is the first study to examine the effect of childhood trauma, depression and PTSD on HIV medication adherence in a low income country facing a significant burden of HIV. Allocating spending on HIV/AIDS toward integrating mental health services with HIV care is essential to the creation of systems that enhance medication adherence and maximize the potential of expanded antiretroviral access to improve health and reduce new infections
    corecore