14 research outputs found

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags

    No full text
    Whereas genome sequencing defines the genetic potential of an organism, transcript sequencing defines the utilization of this potential and links the genome with most areas of biology. To exploit the information within the human genome in the fight against cancer, we have deposited some two million expressed sequence tags (ESTs) from human tumors and their corresponding normal tissues in the public databases. The data currently define approximate to23,500 genes, of which only approximate to1,250 are still represented only by ESTs. Examination of the EST coverage of known cancer-related (CR) genes reveals that <1% do not have corresponding ESTs, indicating that the representation of genes associated with commonly studied tumors is high. The careful recording of the origin of all ESTs we have produced has enabled detailed definition of where the genes they represent are expressed in the human body. More than 100,000 ESTs are available for seven tissues, indicating a surprising variability of gene usage that has led to the discovery of a significant number of genes with restricted expression, and that may thus be therapeutically useful. The ESTs also reveal novel nonsynonymous germline variants (although the one-pass nature of the data necessitates careful validation) and many alternatively spliced transcripts. Although widely exploited by the scientific community, vindicating our totally open source policy, the EST data generated still provide extensive information that remains to be systematically explored, and that may further facilitate progress toward both the understanding and treatment of human cancers

    The genus Neisseria

    No full text
    The genus Neisseria comprises a number of closely related Gram-negative organisms isolated from humans and animals. Their interrelationships are poorly resolved by phenotypic approaches, and the classification of the species groups by molecular techniques has been confused by a combination of their genetic similarity and extensive shared sequence polymorphism as a consequence of shared ancestry, horizontal genetic exchange, or both. Whole genome sequence analysis, especially of large numbers of draft genome sequences, has enabled the comparison of core genes across the genus, and this has proved to be an effective means of defining species groups within the genus. This redefinition is largely consistent with previous species designations with relatively few adjustments necessary. Most members of the genus are not, or are very rarely, pathogenic, but the genus contains the globally significant pathogens Neisseria meningitidis, the meningococcus, and Neisseria gonorrhoeae, the gonococcus. The meningococcus is an ‘‘accidental pathogen’’: predominantly existing as a harmless commensal, with very few infections resulting in pathology. Pathology does not appear to play a role in the transmission of this organism, although some genotypes have a greater propensity to cause disease than others. The majority of work on the genus concentrates on the two pathogenic species, with attempts to develop a comprehensive vaccine against the meningococcus a major driver for research. The gonococcus is antigenically highly diverse but genetically quite uniform, and probably emerged from a single clone that changed its niche. Emerging antibiotic resistance of the gonococcus currently represents the most significant global health challenge presented by this genus
    corecore