6 research outputs found

    The claudin-like apicomplexan microneme protein is required for gliding motility and infectivity of Plasmodium sporozoites.

    No full text
    Invasion of host cells by apicomplexan parasites such as Toxoplasma and Plasmodium spp requires the sequential secretion of the parasite apical organelles, the micronemes and the rhoptries. The claudin-like apicomplexan microneme protein (CLAMP) is a conserved protein that plays an essential role during invasion by Toxoplasma gondii tachyzoites and in Plasmodium falciparum asexual blood stages. CLAMP is also expressed in Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, but its role in this stage is still unknown. CLAMP is essential for Plasmodium blood stage growth and is refractory to conventional gene deletion. To circumvent this obstacle and study the function of CLAMP in sporozoites, we used a conditional genome editing strategy based on the dimerisable Cre recombinase in the rodent malaria model parasite P. berghei. We successfully deleted clamp gene in P. berghei transmission stages and analyzed the functional consequences on sporozoite infectivity. In mosquitoes, sporozoite development and egress from oocysts was not affected in conditional mutants. However, invasion of the mosquito salivary glands was dramatically reduced upon deletion of clamp gene. In addition, CLAMP-deficient sporozoites were impaired in cell traversal and productive invasion of mammalian hepatocytes. This severe phenotype was associated with major defects in gliding motility and with reduced shedding of the sporozoite adhesin TRAP. Expansion microscopy revealed partial colocalization of CLAMP and TRAP in a subset of micronemes, and a distinct accumulation of CLAMP at the apical tip of sporozoites. Collectively, these results demonstrate that CLAMP is essential across invasive stages of the malaria parasite, and support a role of the protein upstream of host cell invasion, possibly by regulating the secretion or function of adhesins in Plasmodium sporozoites

    The AMA1-RON complex drives Plasmodium sporozoite invasion in the mosquito and mammalian hosts

    No full text
    International audiencePlasmodium sporozoites that are transmitted by blood-feeding female Anopheles mosquitoes invade hepatocytes for an initial round of intracellular replication, leading to the release of merozoites that invade and multiply within red blood cells. Sporozoites and merozoites share a number of proteins that are expressed by both stages, including the Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck Proteins (RONs). Although AMA1 and RONs are essential for merozoite invasion of erythrocytes during asexual blood stage replication of the parasite, their function in sporozoites was still unclear. Here we show that AMA1 interacts with RONs in mature sporozoites. By using DiCre-mediated conditional gene deletion in P . berghei , we demonstrate that loss of AMA1, RON2 or RON4 in sporozoites impairs colonization of the mosquito salivary glands and invasion of mammalian hepatocytes, without affecting transcellular parasite migration. Three-dimensional electron microscopy data showed that sporozoites enter salivary gland cells through a ring-like structure and by forming a transient vacuole. The absence of a functional AMA1-RON complex led to an altered morphology of the entry junction, associated with epithelial cell damage. Our data establish that AMA1 and RONs facilitate host cell invasion across Plasmodium invasive stages, and suggest that sporozoites use the AMA1-RON complex to efficiently and safely enter the mosquito salivary glands to ensure successful parasite transmission. These results open up the possibility of targeting the AMA1-RON complex for transmission-blocking antimalarial strategies

    Naive and memory CD4 + T cell subsets can contribute to the generation of human Tfh cells

    No full text
    International audienceCD4 + T follicular helper cells (Tfh) promote B cell maturation and antibody production in secondary lymphoid organs. By using an innovative culture system based on splenocyte stimulation, we studied the dynamics of naive and memory CD4 + T cells during the generation of a Tfh cell response. We found that both naive and memory CD4 + T cells can acquire phenotypic and functional features of Tfh cells. Moreover, we show here that the transition of memory as well as naive CD4 + T cells into the Tfh cell profile is supported by the expression of pro-Tfh genes, including transcription factors known to orchestrate Tfh cell development. Using this culture system, we provide pieces of evidence that HIV infection differentially alters these newly identified pathways of Tfh cell generation. Such diversity in pathways of Tfh cell generation offers a new framework for the understanding of Tfh cell responses in physiological and pathological contexts

    Naive and memory CD4 + T cell subsets can contribute to the generation of human Tfh cells

    No full text
    International audienceCD4 + T follicular helper cells (Tfh) promote B cell maturation and antibody production in secondary lymphoid organs. By using an innovative culture system based on splenocyte stimulation, we studied the dynamics of naive and memory CD4 + T cells during the generation of a Tfh cell response. We found that both naive and memory CD4 + T cells can acquire phenotypic and functional features of Tfh cells. Moreover, we show here that the transition of memory as well as naive CD4 + T cells into the Tfh cell profile is supported by the expression of pro-Tfh genes, including transcription factors known to orchestrate Tfh cell development. Using this culture system, we provide pieces of evidence that HIV infection differentially alters these newly identified pathways of Tfh cell generation. Such diversity in pathways of Tfh cell generation offers a new framework for the understanding of Tfh cell responses in physiological and pathological contexts

    Platelet‐Derived Growth Factor Receptor Type α Activation Drives Pulmonary Vascular Remodeling Via Progenitor Cell Proliferation and Induces Pulmonary Hypertension

    No full text
    International audienceBackground Platelet‐derived growth factor is a major regulator of the vascular remodeling associated with pulmonary arterial hypertension. We previously showed that protein widely 1 (PW1 + ) vascular progenitor cells participate in early vessel neomuscularization during experimental pulmonary hypertension (PH) and we addressed the role of the platelet‐derived growth factor receptor type α (PDGFRα) pathway in progenitor cell‐dependent vascular remodeling and in PH development. Methods and Results Remodeled pulmonary arteries from patients with idiopathic pulmonary arterial hypertension showed an increased number of perivascular and vascular PW1 + cells expressing PDGFRα. PW1 nLacZ reporter mice were used to follow the fate of pulmonary PW1 + progenitor cells in a model of chronic hypoxia–induced PH development. Under chronic hypoxia, PDGFRα inhibition prevented the increase in PW1 + progenitor cell proliferation and differentiation into vascular smooth muscle cells and reduced pulmonary vessel neomuscularization, but did not prevent an increased right ventricular systolic pressure or the development of right ventricular hypertrophy. Conversely, constitutive PDGFRα activation led to neomuscularization via PW1 + progenitor cell differentiation into new smooth muscle cells and to PH development in male mice without fibrosis. In vitro, PW1 + progenitor cell proliferation, but not differentiation, was dependent on PDGFRα activity. Conclusions These results demonstrate a major role of PDGFRα signaling in progenitor cell–dependent lung vessel neomuscularization and vascular remodeling contributing to PH development, including in idiopathic pulmonary arterial hypertension patients. Our findings suggest that PDGFRα blockers may offer a therapeutic add‐on strategy to combine with current pulmonary arterial hypertension treatments to reduce vascular remodeling. Furthermore, our study highlights constitutive PDGFRα activation as a novel experimental PH model
    corecore