597 research outputs found
Resource targets for advanced underground coal extraction systems
Resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems are identified. A comprehensive examination of conventional and unconventional coals with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry was made. The results indicate that the resource of primary importance is flat lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat lying multiple seams and thin seams (especially those in Appalachia). Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions of subregions, but the limited tonnage available places them in a position of tertiary importance
The Frontier Fields Lens Modeling Comparison Project
Gravitational lensing by clusters of galaxies offers a powerful probe of
their structure and mass distribution. Deriving a lens magnification map for a
galaxy cluster is a classic inversion problem and many methods have been
developed over the past two decades to solve it. Several research groups have
developed techniques independently to map the predominantly dark matter
distribution in cluster lenses. While these methods have all provided
remarkably high precision mass maps, particularly with exquisite imaging data
from the Hubble Space Telescope (HST), the reconstructions themselves have
never been directly compared. In this paper, we report the results of comparing
various independent lens modeling techniques employed by individual research
groups in the community. Here we present for the first time a detailed and
robust comparison of methodologies for fidelity, accuracy and precision. For
this collaborative exercise, the lens modeling community was provided simulated
cluster images -- of two clusters Ares and Hera -- that mimic the depth and
resolution of the ongoing HST Frontier Fields. The results of the submitted
reconstructions with the un-blinded true mass profile of these two clusters are
presented here. Parametric, free-form and hybrid techniques have been deployed
by the participating groups and we detail the strengths and trade-offs in
accuracy and systematics that arise for each methodology. We note in conclusion
that lensing reconstruction methods produce reliable mass distributions that
enable the use of clusters as extremely valuable astrophysical laboratories and
cosmological probes.Comment: 38 pages, 25 figures, submitted to MNRAS, version with full
resolution images can be found at
http://pico.bo.astro.it/~massimo/papers/FFsims.pd
Constraining Lyman-alpha spatial offsets at from VANDELS slit spectroscopy
We constrain the distribution of spatially offset Lyman-alpha emission
(Ly) relative to rest-frame ultraviolet emission in high
redshift () Lyman-break galaxies (LBGs) exhibiting Ly emission
from VANDELS, a VLT/VIMOS slit-spectroscopic survey of the CANDELS Ultra Deep
Survey and Chandra Deep Field South fields (
total). Because slit spectroscopy compresses two-dimensional spatial
information into one spatial dimension, we use Bayesian inference to recover
the underlying Ly spatial offset distribution. We model the
distribution using a 2D circular Gaussian, defined by a single parameter
, the standard deviation expressed in polar
coordinates. Over the entire redshift range of our sample (), we find
kpc ( conf.),
corresponding to arcsec at . We also find that
decreases significantly with redshift. Because
Ly spatial offsets can cause slit-losses, the decrease in
with redshift can partially explain the increase
in the fraction of Ly emitters observed in the literature over this
same interval, although uncertainties are still too large to reach a strong
conclusion. If continues to decrease into the
reionization epoch, then the decrease in Ly transmission from galaxies
observed during this epoch might require an even higher neutral hydrogen
fraction than what is currently inferred. Conversely, if spatial offsets
increase with the increasing opacity of the IGM, slit losses may explain some
of the drop in Ly transmission observed at . Spatially resolved
observations of Ly and UV continuum at are needed to settle the
issue.Comment: Submitted to MNRA
The Distances to Open Clusters from Main-Sequence Fitting. IV. Galactic Cepheids, the LMC, and the Local Distance Scale
We derive the basic properties of seven Galactic open clusters containing
Cepheids and construct their period-luminosity (P-L) relations. For our cluster
main-sequence fitting we extend previous Hyades-based empirical
color-temperature corrections to hotter stars using the Pleiades as a template.
We use BVI_{C}JHK_{s} data to test the reddening law, and include metallicity
effects to perform a more comprehensive study for our clusters than prior
efforts. The ratio of total to selective extinction R_V that we derive is
consistent with expectations. Assuming the LMC P-L slopes, we find =
-3.93 +/- 0.07 (statistical) +/- 0.14 (systematic) for 10-day period Cepheids,
which is generally fainter than those in previous studies. Our results are
consistent with recent HST and Hipparcos parallax studies when using the
Wesenheit magnitudes W(VI). Uncertainties in reddening and metallicity are the
major remaining sources of error in the V-band P-L relation, but a higher
precision could be obtained with deeper optical and near-infrared cluster
photometry. We derive distances to NGC4258, the LMC, and M33 of (m - M)_0 =
29.28 +/- 0.10, 18.34 +/- 0.06, and 24.55 +/- 0.28, respectively, with an
additional systematic error of 0.16 mag in the P-L relations. The distance to
NGC4258 is in good agreement with the geometric distance derived from water
masers [\Delta (m - M)_0 = 0.01 +/- 0.24]; our value for M33 is less consistent
with the distance from an eclipsing binary [\Delta (m - M)_0 = 0.37 +/- 0.34];
our LMC distance is moderately shorter than the adopted distance in the HST Key
Project, which formally implies an increase in the Hubble constant of 7% +/-
8%.Comment: 28 pages, 21 figures; accepted for publication in the Ap
Large and unexpected enrichment in stratospheric ^(16)O^(13)C^(18)O and its meridional variation
The stratospheric CO_2 oxygen isotope budget is thought to be governed primarily by the O(1D)+CO_2 isotope exchange reaction. However, there is increasing evidence that other important physical processes may be occurring that standard isotopic tools have been unable to identify. Measuring the distribution of the exceedingly rare CO_2 isotopologue ^(16)O^(13)C^(18)O, in concert with ^(18)O and ^(17)O abundances, provides sensitivities to these additional processes and, thus, is a valuable test of current models. We identify a large and unexpected meridional variation in stratospheric 16O13C18O, observed as proportions in the polar vortex that are higher than in any naturally derived CO_2 sample to date. We show, through photochemical experiments, that lower ^(16)O^(13)C^(18)O proportions observed in the midlatitudes are determined primarily by the O(1D)+CO_2 isotope exchange reaction, which promotes a stochastic isotopologue distribution. In contrast, higher ^(16)O^(13)C^(18)O proportions in the polar vortex show correlations with long-lived stratospheric tracer and bulk isotope abundances opposite to those observed at midlatitudes and, thus, opposite to those easily explained by O(1D)+CO_2. We believe the most plausible explanation for this meridional variation is either an unrecognized isotopic fractionation associated with the mesospheric photochemistry of CO_2 or temperature-dependent isotopic exchange on polar stratospheric clouds. Unraveling the ultimate source of stratospheric ^(16)O^(13)C^(18)O enrichments may impose additional isotopic constraints on biosphere–atmosphere carbon exchange, biosphere productivity, and their respective responses to climate change
The Lantern Vol. 44, No. 1, Fall 1977
• Onto My Love • Saturday Midnight • Michelle • Today • Firefly • Black Midnight • Bamboo Arms • Caesaropapism • A Day In My Life • I Only • For Stephen • April 18, 1958 to July 15, 1977 with Emphasis on July 15 • Ode to Little Sisters • Privacy Warning • For Susan, Someone I Used to Know • A Parting on the Night of June 26th • Infant\u27s Universehttps://digitalcommons.ursinus.edu/lantern/1111/thumbnail.jp
The Wilderness Expedition: An effective life course intervention to improve young peoples well-being and connectedness to nature
It is well understood that wilderness expeditions improve well-being; however, there is little supporting quantitative data. The aim of this study was to measure the impact of wilderness expeditions on self-esteem (SE) and connectedness to nature (CN) and assess whether benefits varied according to participant and expedition characteristics. SE and CN were assessed pre– and post–wilderness expeditions in 130 adolescents using Rosenberg’s SE scale and the state CN scale. Two-way ANOVA revealed significant increases in SE and CN (p < .001) as a result of single expeditions. There was also an interaction effect of expedition and gender on SE (p < .05). Males had a higher SE at the start but female SE increased most. Linear regression revealed that living environment, gender, and the length and location of the expedition did not contribute to changes in SE and CN. Regular contact with natural environments will improve adolescent well-being, with the largest improvements in females
Stellar Rotation in Young Clusters. II. Evolution of Stellar Rotation and Surface Helium Abundance
We derive the effective temperatures and gravities of 461 OB stars in 19
young clusters by fitting the H-gamma profile in their spectra. We use
synthetic model profiles for rotating stars to develop a method to estimate the
polar gravity for these stars, which we argue is a useful indicator of their
evolutionary status. We combine these results with projected rotational
velocity measurements obtained in a previous paper on these same open clusters.
We find that the more massive B-stars experience a spin down as predicted by
the theories for the evolution of rotating stars. Furthermore, we find that the
members of binary stars also experience a marked spin down with advanced
evolutionary state due to tidal interactions. We also derive non-LTE-corrected
helium abundances for most of the sample by fitting the He I 4026, 4387, 4471
lines. A large number of helium peculiar stars are found among cooler stars
with Teff < 23000 K. The analysis of the high mass stars (8.5 solar masses < M
< 16 solar masses) shows that the helium enrichment process progresses through
the main sequence (MS) phase and is greater among the faster rotators. This
discovery supports the theoretical claim that rotationally induced internal
mixing is the main cause of surface chemical anomalies that appear during the
MS phase. The lower mass stars appear to have slower rotation rates among the
low gravity objects, and they have a large proportion of helium peculiar stars.
We suggest that both properties are due to their youth. The low gravity stars
are probably pre-main sequence objects that will spin up as they contract.
These young objects very likely host a remnant magnetic field from their natal
cloud, and these strong fields sculpt out surface regions with unusual chemical
abundances.Comment: 50 pages 18 figures, accepted by Ap
Catalog of Galactic Beta Cephei Stars
We present an extensive and up-to-date catalog of Galactic Beta Cephei stars.
This catalog is intended to give a comprehensive overview of observational
characteristics of all known Beta Cephei stars. 93 stars could be confirmed to
be Beta Cephei stars. For some stars we re-analyzed published data or conducted
our own analyses. 61 stars were rejected from the final Beta Cephei list, and
77 stars are suspected to be Beta Cephei stars. A list of critically selected
pulsation frequencies for confirmed Beta Cephei stars is also presented. We
analyze the Beta Cephei stars as a group, such as the distributions of their
spectral types, projected rotational velocities, radial velocities, pulsation
periods, and Galactic coordinates. We confirm that the majority of these stars
are multiperiodic pulsators. We show that, besides two exceptions, the Beta
Cephei stars with high pulsation amplitudes are slow rotators. We construct a
theoretical HR diagram that suggests that almost all 93 Beta Cephei stars are
MS objects. We discuss the observational boundaries of Beta Cephei pulsation
and their physical parameters. We corroborate that the excited pulsation modes
are near to the radial fundamental mode in frequency and we show that the mass
distribution of the stars peaks at 12 solar masses. We point out that the
theoretical instability strip of the Beta Cephei stars is filled neither at the
cool nor at the hot end and attempt to explain this observation
Recommended from our members
Groundwater residence time distributions in peatlands: implications for peat decomposition and accumulation
Peat soils consist of poorly decomposed plant detritus, preserved by low decay rates, and deep peat deposits are globally significant stores in the carbon cycle. High water tables and low soil temperatures are commonly held to be the primary reasons for low peat decay rates. However, recent studies suggest a thermodynamic limit to peat decay, whereby the slow turnover of peat soil pore water may lead to high concentrations of phenols and dissolved inorganic carbon. In sufficient concentrations, these chemicals may slow or even halt microbial respiration, providing a negative feedback to peat decay. We document the analysis of a simple, one-dimensional theoretical model of peatland pore water residence time distributions (RTDs). The model suggests that broader, thicker peatlands may be more resilient to rapid decay caused by climate change because of slow pore water turnover in deep layers. Even shallow peat deposits may also be resilient to rapid decay if rainfall rates are low. However, the model suggests that even thick peatlands may be vulnerable to rapid decay under prolonged high rainfall rates, which may act to flush pore water with fresh rainwater. We also used the model to illustrate a particular limitation of the diplotelmic (i.e., acrotelm and catotelm) model of peatland structure. Model peatlands of contrasting hydraulic structure exhibited identical water tables but contrasting RTDs. These scenarios would be treated identically by diplotelmic models, although the thermodynamic limit suggests contrasting decay regimes. We therefore conclude that the diplotelmic model be discarded in favor of model schemes that consider continuous variation in peat properties and processes
- …