28 research outputs found

    A Continuum Model for Metabolic Gas Exchange in Pear Fruit

    Get PDF
    Exchange of O2 and CO2 of plants with their environment is essential for metabolic processes such as photosynthesis and respiration. In some fruits such as pears, which are typically stored under a controlled atmosphere with reduced O2 and increased CO2 levels to extend their commercial storage life, anoxia may occur, eventually leading to physiological disorders. In this manuscript we have developed a mathematical model to predict the internal gas concentrations, including permeation, diffusion, and respiration and fermentation kinetics. Pear fruit has been selected as a case study. The model has been used to perform in silico experiments to evaluate the effect of, for example, fruit size or ambient gas concentration on internal O2 and CO2 levels. The model incorporates the actual shape of the fruit and was solved using fluid dynamics software. Environmental conditions such as temperature and gas composition have a large effect on the internal distribution of oxygen and carbon dioxide in fruit. Also, the fruit size has a considerable effect on local metabolic gas concentrations; hence, depending on the size, local anaerobic conditions may result, which eventually may lead to physiological disorders. The model developed in this manuscript is to our knowledge the most comprehensive model to date to simulate gas exchange in plant tissue. It can be used to evaluate the effect of environmental stresses on fruit via in silico experiments and may lead to commercial applications involving long-term storage of fruit under controlled atmospheres

    Using a reaction‐diffusion model to estimate day respiration and reassimilation of (photo)respiredCO2in leaves

    Get PDF
    peer-reviewedMethods using gas exchange measurements to estimate respiration in the light (day respiration Rd) make implicit assumptions about reassimilation of (photo)respired CO2; however, this reassimilation depends on the positions of mitochondria. We used a reaction-diffusion model without making these assumptions to analyse datasets on gas exchange, chlorophyll fluorescence and anatomy for tomato leaves. We investigated how Rd values obtained by the Kok and the Yin methods are affected by these assumptions and how those by the Laisk method are affected by the positions of mitochondria. The Kok method always underestimated Rd. Estimates of Rd by the Yin method and by the reaction-diffusion model agreed only for nonphotorespiratory conditions. Both the Yin and Kok methods ignore reassimilation of (photo)respired CO2, and thus underestimated Rd for photorespiratory conditions, but this was less so in the Yin than in the Kok method. Estimates by the Laisk method were affected by assumed positions of mitochondria. It did not work if mitochondria were in the cytosol between the plasmamembrane and the chloroplast envelope. However, mitochondria were found to be most likely between the tonoplast and chloroplasts. Our reaction-diffusion model effectively estimates Rd, enlightens the dependence of Rd estimates on reassimilation and clarifies (dis)advantages of existing methods.KU Leuve

    Features of trastuzumab-related cardiac dysfunction: deformation analysis outside left ventricular global longitudinal strain

    Get PDF
    BackgroundCancer therapy-related cardiac dysfunction due to trastuzumab has been well-known for many years, and echocardiographic surveillance is recommended every 3 months in patients undergoing trastuzumab treatment, irrespective of the baseline cardiotoxicity risk. However, the potential harm and cost of overscreening in low- and moderate-risk patients have become great concerns.ObjectivesThis study aimed to identify the incidence of early cancer therapy-related cardiac dysfunction (CTRCD) and the behaviours of left and right heart deformations during trastuzumab chemotherapy in low- and moderate-risk patients.MethodsWe prospectively enrolled 110 anthracycline-naïve women with breast cancer and cardiovascular risk factors who were scheduled to receive trastuzumab. The left ventricular ejection fraction (LVEF), left ventricular global longitudinal strain (LV-GLS), and right ventricular and left atrial longitudinal strains were evaluated using echocardiography at baseline, before every subsequent cycle and 3 weeks after the final dose of trastuzumab. The baseline risk of CTRCD was graded according to the risk score proposed by the Heart Failure Association (HFA) Cardio-Oncology Working Group and the International Cardio-Oncology Society (ICOS). CTRCD and its severity were defined according to the current European Society of Cardiology (ESC) guidelines.ResultsTwelve (10.9%) patients had asymptomatic CTRCD. All CTRCD occurred sporadically during the first 9 months of the active trastuzumab regimen in both low- and moderate-risk patients. While CTRCD was graded as moderate severity in 41.7% of patients and heart failure therapy was initiated promptly, no irreversible cardiotoxicity or trastuzumab interruption was recorded at the end of follow-up. Among the left and right heart deformation indices, only LV-GLS decreased significantly in the CTRCD group during the trastuzumab regimen.ConclusionsCTRCD is prevalent in patients with non-high-risk breast cancer undergoing trastuzumab chemotherapy. Low- and moderate-risk patients show distinct responses to trastuzumab. The LV-GLS is the only deformation index sensitive to early trastuzumab-related cardiac dysfunction

    Insights into adsorptive interactions between antibiotic molecules and rutile-TiO2 (110) surface

    No full text
    Intermolecular interactions between antibiotic molecules, ampicillin (AP), amoxicillin (AX) and tetracycline (TC), and rutile-TiO2 (110) surface (r-TiO2) were thoroughly investigated using density functional theory calculations in solid state. The popular rutile-TiO2 is considered as a material for treatment of antibiotic molecules present in waste water. Calculated results revealed that in these adsorbate-adsorbent systems, significant contributions of Ti··O electrostatic interactions and important addition of O/N-H···O hydrogen bonds occur in stabilization of configurations of the most favored structures. Existence and role of adsorptive interactions are clarified by the atom-in-molecule theory, density of states and electron density transfer analyses. Adsorption of antibiotic molecules onto the r-TiO2 surface is characterized as chemisorption processes. Furthermore, the most stable configurations tend to be formed preferably in horizontal arrangement of molecules onto the material surface. The adhesive capacity of these AP, AX and TC antibiotic molecules on r-TiO2 surface is large and quantitatively evaluated

    Using a reaction-diffusion model to estimate day respiration and reassimilation of (photo)respired CO2 in leaves

    No full text
    Methods using gas exchange measurements to estimate respiration in the light (day respiration R d ) make implicit assumptions about reassimilation of (photo)respired CO2 ; however, this reassimilation depends on the positions of mitochondria. We used a reaction-diffusion model without making these assumptions to analyse datasets on gas exchange, chlorophyll fluorescence and anatomy for tomato leaves. We investigated how R d values obtained by the Kok and the Yin methods are affected by these assumptions and how those by the Laisk method are affected by the positions of mitochondria. The Kok method always underestimated R d . Estimates of R d by the Yin method and by the reaction-diffusion model agreed only for nonphotorespiratory conditions. Both the Yin and Kok methods ignore reassimilation of (photo)respired CO2 , and thus underestimated R d for photorespiratory conditions, but this was less so in the Yin than in the Kok method. Estimates by the Laisk method were affected by assumed positions of mitochondria. It did not work if mitochondria were in the cytosol between the plasmamembrane and the chloroplast envelope. However, mitochondria were found to be most likely between the tonoplast and chloroplasts. Our reaction-diffusion model effectively estimates R d , enlightens the dependence of R d estimates on reassimilation and clarifies (dis)advantages of existing methods.status: publishe
    corecore