549 research outputs found

    Quasilocal Center-of-Mass for Teleparallel Gravity

    Full text link
    Asymptotically flat gravitating systems have 10 conserved quantities, which lack proper local densities. It has been hoped that the teleparallel equivalent of Einstein's GR (TEGR, aka GR∣∣{}_{||}) could solve this gravitational energy-momentum localization problem. Meanwhile a new idea: quasilocal quantities, has come into favor. The earlier quasilocal investigations focused on energy-momentum. Recently we considered quasilocal angular momentum for the teleparallel theory and found that the popular expression (unlike our ``covariant-symplectic'' one) gives the correct result only in a certain frame. We now report that the center-of-mass moment, which has largely been neglected, gives an even stronger requirement. We found (independent of the frame gauge) that our ``covariant symplectic'' Hamiltonian-boundary-term quasilocal expression succeeds for all the quasilocal quantities, while the usual expression cannot give the desired center-of-mass moment. We also conclude, contrary to hopes, that the teleparallel formulation appears to have no advantage over GR with regard to localization.Comment: 12 pages, to appear in the proceedings of the 10th Marcel Grossman meeting (Rio de Janeiro, 2003

    Tuberculous Aneurysm of the Abdominal Aorta: Endovascular Repair Using Stent Grafts in Two Cases

    Get PDF
    Tuberculous aneurysm of the aorta is exceedingly rare. To date, the standard therapy for mycotic aneurysm of the abdominal aorta has been surgery involving in-situ graft placement or extra-anatomic bypass surgery followed by effective anti-tuberculous medication. Only recently has the use of a stent graft in the treatment of tuberculous aortic aneurysm been described in the literature. We report two cases in which a tuberculous aneurysm of the abdominal aorta was successfully repaired using endovascular stent grafts. One case involved is a 42-year-old woman with a large suprarenal abdominal aortic aneurysm and a right psoas abscess, and the other, a 41-year-old man in whom an abdominal aortic aneurysm ruptured during surgical drainage of a psoas abscess

    Trypsin-induced proteome alteration during cell subculture in mammalian cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is essential to subculture the cells once cultured cells reach confluence. For this, trypsin is frequently applied to dissociate adhesive cells from the substratum. However, due to the proteolytic activity of trypsin, cell surface proteins are often cleaved, which leads to dysregulation of the cell functions.</p> <p>Methods</p> <p>In this study, a triplicate 2D-DIGE strategy has been performed to monitor trypsin-induced proteome alterations. The differentially expressed spots were identified by MALDI-TOF MS and validated by immunoblotting.</p> <p>Results</p> <p>36 proteins are found to be differentially expressed in cells treated with trypsin, and proteins that are known to regulate cell metabolism, growth regulation, mitochondrial electron transportation and cell adhesion are down-regulated and proteins that regulate cell apoptosis are up-regulated after trypsin treatment. Further study shows that bcl-2 is down-regulated, p53 and p21 are both up-regulated after trypsinization.</p> <p>Conclusions</p> <p>In summary, this is the first report that uses the proteomic approach to thoroughly study trypsin-induced cell physiological changes and provides researchers in carrying out their experimental design.</p

    Reactivation of Epstein–Barr virus by a dual-responsive fluorescent EBNA1-targeting agent with Zn2+-chelating function

    Get PDF
    EBNA1 is the only Epstein–Barr virus (EBV) latent protein responsible for viral genome maintenance and is expressed in all EBV-infected cells. Zn2+ is essential for oligomerization of the functional EBNA1. We constructed an EBNA1 binding peptide with a Zn2+ chelator to create an EBNA1-specific inhibitor (ZRL5P4). ZRL5P4 by itself is sufficient to reactivate EBV from its latent infection. ZRL5P4 is able to emit unique responsive fluorescent signals once it binds with EBNA1 and a Zn2+ ion. ZRL5P4 can selectively disrupt the EBNA1 oligomerization and cause nasopharyngeal carcinoma (NPC) tumor shrinkage, possibly due to EBV lytic induction. Dicer1 seems essential for this lytic reactivation. As can been seen, EBNA1 is likely to maintain NPC cell survival by suppressing viral reactivation

    A new catechin oxidation product and polymeric polyphenols of post-fermented tea

    Get PDF
    A new epicatechin oxidation product with a 3,6-dihydro-6-oxo-2H-pyran-2- carboxylic acid moiety was isolated from a commercially available post-fermented tea that is produced by microbial fermentation of green tea. The structure of this product was determined by spectroscopic methods. A production mechanism that includes the oxygenative cleavage of the catechol B-ring of (-)-epicatechin is proposed. In addition, polymeric polyphenols were separated from the post-fermented tea and partially characterised by 13C NMR spectroscopy and gel-permeation chromatography. The polymers appear to be primarily composed of epigalloacetechin-3-O-gallate and the molecular weight (Mn) of the acetylated form was estimated to be ∼3500

    A microfluidic-FCS platform for investigation on the dissociation of Sp1-DNA complex by doxorubicin

    Get PDF
    The transcription factor (TF) Sp1 is a well-known RNA polymerase II transcription activator that binds to GC-rich recognition sites in a number of essential cellular and viral promoters. In addition, direct interference of Sp1 binding to DNA cognate sites using DNA-interacting compounds may provide promising therapies for suppression of cancer progression and viral replication. In this study, we present a rapid, sensitive and cost-effective evaluation of a GC intercalative drug, doxorubicin (DOX), in dissociating the Sp1–DNA complex using fluorescence correlation spectroscopy (FCS) in a microfluidic system. FCS allows assay miniaturization without compromising sensitivity, making it an ideal analytical method for integration of binding assays into high-throughput, microfluidic platforms. A polydimethylsiloxane (PDMS)-based microfluidic chip with a mixing network is used to achieve specific drug concentrations for drug titration experiments. Using FCS measurements, the IC(50) of DOX on the dissociation of Sp1–DNA complex is estimated to be 0.55 μM, which is comparable to that measured by the electrophoretic mobility shift assay (EMSA). However, completion of one drug titration experiment on the proposed microfluidic-FCS platform is accomplished using only picograms of protein and DNA samples and less than 1 h total assay time, demonstrating vast improvements over traditional ensemble techniques

    Genome-Wide Association Study of Young-Onset Hypertension in the Han Chinese Population of Taiwan

    Get PDF
    Young-onset hypertension has a stronger genetic component than late-onset counterpart; thus, the identification of genes related to its susceptibility is a critical issue for the prevention and management of this disease. We carried out a two-stage association scan to map young-onset hypertension susceptibility genes. The first-stage analysis, a genome-wide association study, analyzed 175 matched case-control pairs; the second-stage analysis, a confirmatory association study, verified the results at the first stage based on a total of 1,008 patients and 1,008 controls. Single-locus association tests, multilocus association tests and pair-wise gene-gene interaction tests were performed to identify young-onset hypertension susceptibility genes. After considering stringent adjustments of multiple testing, gene annotation and single-nucleotide polymorphism (SNP) quality, four SNPs from two SNP triplets with strong association signals (−log10(p)>7) and 13 SNPs from 8 interactive SNP pairs with strong interactive signals (−log10(p)>8) were carefully re-examined. The confirmatory study verified the association for a SNP quartet 219 kb and 495 kb downstream of LOC344371 (a hypothetical gene) and RASGRP3 on chromosome 2p22.3, respectively. The latter has been implicated in the abnormal vascular responsiveness to endothelin-1 and angiotensin II in diabetic-hypertensive rats. Intrinsic synergy involving IMPG1 on chromosome 6q14.2-q15 was also verified. IMPG1 encodes interphotoreceptor matrix proteoglycan 1 which has cation binding capacity. The genes are novel hypertension targets identified in this first genome-wide hypertension association study of the Han Chinese population
    • …
    corecore