2,726 research outputs found

    Remote Recession Sensing of Ablative Heat Shield Materials

    Get PDF
    Material recession and charring are two major processes determining the performance of ablative heat shield materials. Even in ground testing, the characterization of these two mechanisms relies on measurements of material thickness before and after testing, thus providing only information integrated over the test time. For recession measurements, optical methods such as imaging the sample surface during testing are under investigation but require high alignment and instrument effort, therefore being not established as a standard measurement method. For char depth measurements, the most common method so far consists in investigation of sectioned samples after testing or in the case of Stardust where core extractions were performed to determine char information. In flight, no reliable recession measurements are available, except total recession after recovering the heat shield on ground. Developments of mechanical recession sensors have been started but require substantial on board instrumentation adding mass and complexity. In this work, preliminary experiments to evaluate the feasibility of remote sensing of material recession and possibly char depth through optically observing the emission signatures of seeding materials in the post shock plasma is investigated. It is shown that this method can provide time resolved recession measurements without the necessity of accurate alignment procedures of the optical set-up and without any instrumentation on board of a spacecraft. Furthermore, recession data can be obtained without recovering flight hardware which would be a huge benefit for inexpensive heat shield material testing on board of small re-entry probes, e.g. on new micro-satellite re-entry probes as a possible future application of Cubesats or RB

    Modelling proteins’ hidden conformations to predict antibiotic resistance

    Get PDF
    AbstractTEM β-lactamase confers bacteria with resistance to many antibiotics and rapidly evolves activity against new drugs. However, functional changes are not easily explained by differences in crystal structures. We employ Markov state models to identify hidden conformations and explore their role in determining TEM’s specificity. We integrate these models with existing drug-design tools to create a new technique, called Boltzmann docking, which better predicts TEM specificity by accounting for conformational heterogeneity. Using our MSMs, we identify hidden states whose populations correlate with activity against cefotaxime. To experimentally detect our predicted hidden states, we use rapid mass spectrometric footprinting and confirm our models’ prediction that increased cefotaxime activity correlates with reduced Ω-loop flexibility. Finally, we design novel variants to stabilize the hidden cefotaximase states, and find their populations predict activity against cefotaxime in vitro and in vivo. Therefore, we expect this framework to have numerous applications in drug and protein design.</jats:p

    An Affine-Invariant Sampler for Exoplanet Fitting and Discovery in Radial Velocity Data

    Full text link
    Markov Chain Monte Carlo (MCMC) proves to be powerful for Bayesian inference and in particular for exoplanet radial velocity fitting because MCMC provides more statistical information and makes better use of data than common approaches like chi-square fitting. However, the non-linear density functions encountered in these problems can make MCMC time-consuming. In this paper, we apply an ensemble sampler respecting affine invariance to orbital parameter extraction from radial velocity data. This new sampler has only one free parameter, and it does not require much tuning for good performance, which is important for automatization. The autocorrelation time of this sampler is approximately the same for all parameters and far smaller than Metropolis-Hastings, which means it requires many fewer function calls to produce the same number of independent samples. The affine-invariant sampler speeds up MCMC by hundreds of times compared with Metropolis-Hastings in the same computing situation. This novel sampler would be ideal for projects involving large datasets such as statistical investigations of planet distribution. The biggest obstacle to ensemble samplers is the existence of multiple local optima; we present a clustering technique to deal with local optima by clustering based on the likelihood of the walkers in the ensemble. We demonstrate the effectiveness of the sampler on real radial velocity data.Comment: 24 pages, 7 figures, accepted to Ap

    A Young Stellar Cluster in the Nucleus of NGC 4449

    Full text link
    We have obtained 1-2 A resolution optical Echellette spectra of the nuclear star cluster in the nearby starburst galaxy NGC 4449. The light is clearly dominated by a very young (6-10 Myr) population of stars. For our age dating, we have used recent population synthesis models to interpret the observed equivalent width of stellar absorption features such as the HI Balmer series and the CaII triplet around 8500 A. We also compare the observed spectrum of the nuclear cluster to synthesized spectra of simple stellar populations of varying ages. All these approaches yield a consistent cluster age. Metallicity estimates based on the relative intensities of various ionization lines yield no evidence for significant enrichment in the center of this low mass galaxy: the metallicity of the nuclear cluster is about one fourth of the solar value, in agreement with independent estimates for the disk material of NGC 4449.Comment: 24 pages (incl. 7 figures), accepted by AJ, March 2001 issue revised version with minor changes and additions, one additional figur

    Brick Walls on the Brane

    Get PDF
    The so-called ``brick-wall model'' is a semi-classical approach that has been used to explain black hole entropy in terms of thermal matter fields. Here, we apply the brick-wall formalism to thermal bulk fields in a Randall-Sundrum brane world scenario. In this case, the black hole entity is really a string-like object in the anti-de Sitter bulk, while appearing as a Schwarzchild black hole to observers living on the brane. In spite of these exotic circumstances, we establish that the Bekenstein-Hawking entropy law is preserved. Although a similar calculation was recently considered in the literature, this prior work invoked a simplifying assumption (which we avoid) that can not be adequately justified.Comment: 18 pages, Latex; references and discussion added but conclusions unchanged; references missing in V4 have been restore

    Sex differences in atheroma burden and endothelial function in patients with early coronary atherosclerosis

    Get PDF
    Aims Women and men have different clinical presentations and outcomes in coronary artery disease (CAD). We tested the hypothesis that sex differences may influence coronary atherosclerotic burden and coronary endothelial function before development of obstructive CAD. Methods and results A total of 142 patients (53 men, 89 women; mean ± SD age, 49.3 ± 11.7 years) with early CAD simultaneously underwent intravascular ultrasonography and coronary endothelial function assessment. Atheroma burden in the left main and proximal left anterior descending (LAD) arteries was significantly greater in men than women (median, 23.0% vs. 14.1%, P = 0.002; median, 40.1% vs. 29.3%, P = 0.001, respectively). Atheroma eccentricity in the proximal LAD artery was significantly higher in men than women (median, 0.89 vs. 0.80, P = 0.04). The length of the coronary segments with endothelial dysfunction was significantly longer in men than women (median, 39.2 vs. 11.1 mm, P = 0.002). In contrast, maximal coronary flow reserve was significantly lower in women than men (2.80 vs. 3.30, P < 0.001). Sex was an independent predictor of atheroma burden in the left main and proximal LAD arteries (both P < 0.05) by multivariate analysis. Conclusion Men have greater atheroma burden, more eccentric atheroma, and more diffuse epicardial endothelial dysfunction than women. These results suggest that men have more severe structural and functional abnormalities in epicardial coronary arteries than women, even in patients with early atherosclerosis, which may result in the higher incidence rates of CAD and ST-segment myocardial infarction in men than wome

    Rotational Spectromicroscopy: Imaging the Orbital Interaction between Molecular Hydrogen and an Adsorbed Molecule

    Full text link
    A hydrogen molecule can diffuse freely on the surface and be trapped above an adsorbed molecule within the junction of a scanning tunneling microscope. The trapped dihydrogen exhibits the properties of a free rotor. Here we show that the intermolecular interaction between dihydrogen and Mg-porphyrin (MgP) can be visualized by imaging j=0 to 2 rotational excitation of dihydrogen. The interaction leads to a weakened H-H bond and modest electron donation from the dihydrogen to the lowest unoccupied molecular orbital of MgP, a process similarly observed for the interaction between dihydrogen and an adsorbed Au atom

    The Survey of Nearby Nuclei with the Space Telescope Imaging Spectrograph: Emission-Line Nuclei at Hubble Space Telescope Resolution

    Get PDF
    We present results from a program of optical spectroscopy for 23 nearby galaxies with emission-line nuclei. This investigation takes advantage of the spatial resolution of the Hubble Space Telescope to study the structure and energetics of the central ~10-20 pc, and the resulting data have value for quantifying central black hole masses, star formation histories, and nebular properties. This paper provides a description of the experimental design, and new findings from the study of emission lines. The sample targets span a range of nebular spectroscopic class, from H II to Seyfert nuclei. This data set and the resulting measurements are unique in terms of the sample size, the range of nebular class, and the investigation of physical scales extending down to parsecs. The line ratios indicative of nebular ionization show only modest variations over order-of-magnitude differences in radius, and demonstrate in a systematic way that geometrical dilution of the radiation field from a central source cannot be assumed as a primary driver of ionization structure. Comparisons between large- and small-aperture measurements for the H II/LINER transition objects provide a new test that challenges conventional wisdom concerning the composite nature of these systems. We also list a number of other quantitative results that are of interest for understanding galaxy nuclei, including (1) the spatial distribution/degree of concentration of Hα emission as a function of nebular type; (2) the radial variation in electron density as a function of nebular type; and (3) quantitative broad Hα estimates obtained at a second epoch for these low-luminosity nuclei. The resulting measurements provide a new basis for comparing the nuclei of other galaxies with that of the Milky Way. We find that the Galactic center is representative across a wide span of properties as a low-luminosity emission-line nucleus

    The Type Ic Supernova 1994I in M51: Detection of Helium and Spectral Evolution

    Get PDF
    We present a series of spectra of SN 1994I in M51, starting 1 week prior to maximum brightness. The nebular phase began about 2 months after the explosion; together with the rapid decline of the optical light, this suggests that the ejected mass was small. Although lines of He I in the optical region are weak or absent, consistent with the Type Ic classification, we detect strong He I λ10830 absorption during the first month past maximum. Thus, if SN 1994I is a typical Type Ic supernova, the atmospheres of these objects cannot be completely devoid of helium. The emission-line widths are smaller than predicted by the model of Nomoto and coworkers, in which the iron core of a low-mass carbon-oxygen star collapses. They are, however, larger than in Type Ib supernovae

    Kondo Effect in Electromigrated Gold Break Junctions

    Full text link
    We present gate-dependent transport measurements of Kondo impurities in bare gold break junctions, generated with high yield using an electromigration process that is actively controlled. Thirty percent of measured devices show zero-bias conductance peaks. Temperature dependence suggests Kondo temperatures \~7K. The peak splitting in magnetic field is consistent with theoretical predictions for g=2, though in many devices the splitting is offset from 2guB by a fixed energy. The Kondo resonances observed here may be due to atomic-scale metallic grains formed during electromigration.Comment: 5 pages, 3 figure
    • …
    corecore