44 research outputs found

    The structure of the complex of calmodulin with KAR-2: a novel mode of binding explains the unique pharmacology of the drug

    Get PDF
    3'-(beta- Chloroethyl)-2',4'-dioxo-3,5'-spiro-oxazolidino-4-deacetoxyvinblastine (KAR-2) is a potent anti-microtubular agent that arrests mitosis in cancer cells without significant toxic side effects. In this study we demonstrate that in addition to targeting microtubules, KAR-2 also binds calmodulin, thereby countering the antagonistic effects of trifluoperazine. To determine the basis of both properties of KAR-2, the three-dimensional structure of its complex with Ca2+-calmodulin has been characterized both in solution using NMR and when crystallized using x-ray diffraction. Heterocorrelation (H-1-N-15 heteronuclear single quantum coherence) spectra of N-15-labeled calmodulin indicate a global conformation change (closure) of the protein upon its binding to KAR-2. The crystal structure at 2.12-Angstrom resolution reveals a more complete picture; KAR-2 binds to a novel structure created by amino acid residues of both the N- and C- terminal domains of calmodulin. Although first detected by x-ray diffraction of the crystallized ternary complex, this conformational change is consistent with its solution structure as characterized by NMR spectroscopy. It is noteworthy that a similar tertiary complex forms when calmodulin binds KAR-2 as when it binds trifluoperazine, even though the two ligands contact (for the most part) different amino acid residues. These observations explain the specificity of KAR-2 as an anti-microtubular agent; the drug interacts with a novel drug binding domain on calmodulin. Consequently, KAR-2 does not prevent calmodulin from binding most of its physiological targets

    Identification of motives mediating alternative functions of the neomorphic moonlighting TPPP/p25

    Get PDF
    The disordered Tubulin Polymerization Promoting Protein (TPPP/p25), a prototype of neomorphic moonlighting proteins, displays physiological and pathological functions by interacting with distinct partners. Here the role of the disordered N- and C-termini straddling a middle flexible segment in the distinct functions of TPPP/p25 was established, and the binding motives responsible for its heteroassociations with tubulin and α-synuclein, its physiological and pathological interacting partner, respectively, were identified. We showed that the truncation of the disordered termini altered the folding state of the middle segment and has functional consequences concerning its physiological function. Double truncation diminished its binding to tubulin/microtubules, consequently the tubulin polymerization/microtubule bundling activities of TPPP/p25 were lost highlighting the role of the disordered termini in its physiological function. In contrast, interaction of TPPP/p25 with α-synuclein was not affected by the truncations and its α-synuclein aggregation promoting activity was preserved, showing that the α-synuclein binding motif is localized within the middle segment. The distinct tubulin and α-synuclein binding motives of TPPP/p25 were also demonstrated at the cellular level: the double truncated TPPP/p25 did not align along the microtubules in contrast to the full length form, while it induced α-synuclein aggregation. The localization of the binding motives on TPPP/p25 were established by specific ELISA experiments performed with designed and synthesized peptides: motives at the 178-187 and 147-156 segments are involved in the binding of tubulin and α-synuclein, respectively. The dissimilarity of these binding motives responsible for the neomorphic moonlighting feature of TPPP/p25 has significant innovative impact in anti-Parkinson drug research

    Interactions of pathological hallmark proteins: Tubulin polymerization promoting protein/p25, {beta}-amyloid and {alpha}-synuclein

    Get PDF
    The disordered tubulin polymerization promoting protein (TPPP/p25) was found to be co-enriched in neuronal and glial inclusions with α-synuclein in Parkinson disease and multiple system atrophy, respectively; however, co-occurrence of α-synuclein with β-amyloid (Aβ) in human brain inclusions has been recently reported, suggesting the existence of mixed type pathologies that could result in obstacles in the correct diagnosis and treatment. Here we identified TPPP/p25 as an interacting partner of the soluble Aβ oligomers as major risk factors for Alzheimer disease using ProtoArray human protein microarray. The interactions of oligomeric Aβ with proteins involved in the etiology of neurological disorders were characterized by ELISA, surface plasmon resonance, pelleting experiments, and tubulin polymerization assay. We showed that the Aβ(42) tightly bound to TPPP/p25 (K(d) = 85 nm) and caused aberrant protein aggregation by inhibiting the physiologically relevant TPPP/p25-derived microtubule assembly. The pair-wise interactions of Aβ(42), α-synuclein, and tubulin were found to be relatively weak; however, these three components formed soluble ternary complex exclusively in the absence of TPPP/p25. The aggregation-facilitating activity of TPPP/p25 and its interaction with Aβ was monitored by electron microscopy with purified proteins by pelleting experiments with cell-free extracts as well as by confocal microscopy with CHO cells expressing TPPP/p25 or amyloid. The finding that the interaction of TPPP/p25 with Aβ can produce pathological-like aggregates is tightly coupled with unusual pathology of the Alzheimer disease revealed previously; that is, partial co-localization of Aβ and TPPP/p25 in the case of diffuse Lewy body disease with Alzheimer disease
    corecore