65 research outputs found

    Prevalence, diversity and transferability of the Tn916-Tn1545 family ICE in oral streptococci

    Get PDF
    Background: The Tn916-Tn1545 family of Integrative Conjugative Elements (ICE) are mobile genetic elements (MGEs) that play a role in the spread of antibiotic resistance genes. The Tn916 harbors the tetracycline resistance gene tet(M) and it has been reported in various bacterial species. The increase in the levels of tetracycline resistance among oral streptococci is of great concern primarily due to the abundance of these species in the oral cavity and their ability to act as reservoirs for antibiotic resistance genes. Methods: In the current study, we screened 100 Norwegian clinical oral streptococcal isolates for the presence and diversity of the Tn916-Tn1545 family. In addition, we investigated the transferability the elements, and the associated transfer frequencies. Results: We observed that 21 isolates harboured the Tn916-Tn1545 family and that two of these elements were the novel Tn6815 and Tn6816. The most prevalent member of the Tn916 -Tn1545 family observed in the Norwegian clinical oral streptococcal isolates was the wild type Tn916.Conclusion: The detection of other members of this family of ICE and varying transfer frequencies suggests high versatility of the Tn916 element in oral streptococci in Norway

    Co-cultivation and transcriptome sequencing of two co-existing fish pathogens Moritella viscosa and Aliivibrio wodanis

    Get PDF
    Background: Aliivibrio wodanis and Moritella viscosa have often been isolated concurrently from fish with winterulcer disease. Little is known about the interaction between the two bacterial species and how the presence of one bacterial species affects the behaviour of the other. Results: The impact on bacterial growth in co-culture was investigated in vitro, and the presence of A. wodanis has an inhibitorial effect on M. viscosa. Further, we have sequenced the complete genomes of these two marine Gram-negative species, and have performed transcriptome analysis of the bacterial gene expression levels from in vivo samples. Using bacterial implants in the fish abdomen, we demonstrate that the presence of A. wodanis is altering the gene expression levels of M. viscosa compared to when the bacteria are implanted separately. Conclusions: From expression profiling of the transcriptomes, it is evident that the presence of A. wodanis is altering the global gene expression of M. viscosa. Co-cultivation studies showed that A. wodanis is impeding the growth of M. viscosa, and that the inhibitorial effect is not contact-dependen

    Expression profiling reveals Spot 42 small RNA as a key regulator in the central metabolism of Aliivibrio salmonicida

    Get PDF
    Spot 42 was discovered in Escherichia coli nearly 40 years ago as an abundant, small and unstable RNA. Its biological role has remained obscure until recently, and is today implicated in having broader roles in the central and secondary metabolism. Spot 42 is encoded by the spf gene. The gene is ubiquitous in the Vibrionaceae family of gamma-proteobacteria. One member of this family, Aliivibrio salmonicida, causes cold-water vibriosis in farmed Atlantic salmon. Its genome encodes Spot 42 with 84% identity to E. coli Spot 42. We generated a A. salmonicida spf deletion mutant. We then used microarray and Northern blot analyses to monitor global effects on the transcriptome in order to provide insights into the biological roles of Spot 42 in this bacterium. In the presence of glucose, we found a surprisingly large number of ≥ 2X differentially expressed genes, and several major cellular processes were affected. A gene encoding a pirin-like protein showed an on/off expression pattern in the presence/absence of Spot 42, which suggests that Spot 42 plays a key regulatory role in the central metabolism by regulating the switch between fermentation and respiration. Interestingly, we discovered an sRNA named VSsrna24, which is encoded immediately downstream of spf. This new sRNA has an expression pattern opposite to that of Spot 42, and its expression is repressed by glucose. We hypothesize that Spot 42 plays a key role in the central metabolism, in part by regulating the pyruvat dehydrogenase enzyme complex via pirin

    Shotgun-metagenomics based prediction of antibiotic resistance and virulence determinants in Staphylococcus aureus from periprosthetic tissue on blood culture bottles

    Get PDF
    Shotgun-metagenomics may give valuable clinical information beyond the detection of potential pathogen(s). Identification of antimicrobial resistance (AMR), virulence genes and typing directly from clinical samples has been limited due to challenges arising from incomplete genome coverage. We assessed the performance of shotgun-metagenomics on positive blood culture bottles (n = 19) with periprosthetic tissue for typing and prediction of AMR and virulence profiles in Staphylococcus aureus. We used different approaches to determine if sequence data from reads provides more information than from assembled contigs. Only 0.18% of total reads was derived from human DNA. Shotgun-metagenomics results and conventional method results were consistent in detecting S. aureus in all samples. AMR and known periprosthetic joint infection virulence genes were predicted from S. aureus. Mean coverage depth, when predicting AMR genes was 209 ×. Resistance phenotypes could be explained by genes predicted in the sample in most of the cases. The choice of bioinformatic data analysis approach clearly influenced the results, i.e. read-based analysis was more accurate for pathogen identification, while contigs seemed better for AMR profiling. Our study demonstrates high genome coverage and potential for typing and prediction of AMR and virulence profiles in S. aureus from shotgun-metagenomics data

    Effects of fecal microbiota transplantation in subjects with irritable bowel syndrome are mirrored by changes in gut microbiome

    Get PDF
    Irritable bowel syndrome (IBS) is a common disorder of the lower gastrointestinal tract. The pathophysiology is far from settled, but a gut microbial dysbiosis is hypothesized to be a contributing factor. We earlier published a randomized double-blind placebo-controlled clinical trial on fecal microbiota transplantation (FMT) for IBS – the REFIT trial. The present data set describes the engraftment and includes participants from the study who received active FMT; 14 participants with effect of FMT (Effect) and 8 without (No effect). Samples were collected at baseline, after 6 and 12 months. Samples from the transplants (Donor) served as a comparator. In total 66 recipient samples and 17 donor samples were subjected to deep metagenomic sequencing, and taxonomic and functional analyses were performed. Alpha diversity measures showed a significantly increased diversity and evenness in the IBS groups compared to the donors. Taxonomic profiles showed higher relative abundance of phylum Firmicutes, and lower relative abundance of phylum Bacteroidetes, compared to donors at baseline. This profile was shifted toward the donor profile following FMT. Imputed growth rates showed that the resulting growth pattern was a conglomerate of donor and recipient activity. Thirty-four functional subclasses showed distinct differences between baseline samples and donors, most of which were shifted toward a donor-like profile after FMT. All of these changes were less pronounced in the No effect group. We conclude that FMT induces long-term changes in gut microbiota, and these changes mirror the clinical effect of the treatment. The study was registered in ClinicalTrials.gov (NCT02154867)

    Development of early life gut resistome and mobilome across gestational ages and microbiota-modifying treatments

    Get PDF
    Background: Gestational age (GA) and associated level of gastrointestinal tract maturation are major factors driving the initial gut microbiota composition in preterm infants. Besides, compared to term infants, premature infants often receive antibiotics to treat infections and probiotics to restore optimal gut microbiota. How GA, antibiotics, and probiotics modulate the microbiota\u27s core characteristics, gut resistome and mobilome, remains nascent. Methods: We analysed metagenomic data from a longitudinal observational study in six Norwegian neonatal intensive care units to describe the bacterial microbiota of infants of varying GA and receiving different treatments. The cohort consisted of probiotic-supplemented and antibiotic-exposed extremely preterm infants (n = 29), antibiotic-exposed very preterm (n = 25), antibiotic-unexposed very preterm (n = 8), and antibiotic-unexposed full-term (n = 10) infants. The stool samples were collected on days of life 7, 28, 120, and 365, and DNA extraction was followed by shotgun metagenome sequencing and bioinformatical analysis. Findings: The top predictors of microbiota maturation were hospitalisation length and GA. Probiotic administration rendered the gut microbiota and resistome of extremely preterm infants more alike to term infants on day 7 and ameliorated GA-driven loss of microbiota interconnectivity and stability. GA, hospitalisation, and both microbiota-modifying treatments (antibiotics and probiotics) contributed to an elevated carriage of mobile genetic elements in preterm infants compared to term controls. Finally, Escherichia coli was associated with the highest number of antibiotic-resistance genes, followed by Klebsiella pneumoniae and Klebsiella aerogenes. Interpretation: Prolonged hospitalisation, antibiotics, and probiotic intervention contribute to dynamic alterations in resistome and mobilome, gut microbiota characteristics relevant to infection risk. Funding: Odd-Berg Group, Northern Norway Regional Health Authority

    Comunicazione italiana nel mondo: interviste a distanza. Prove d'Europa a Radio Colonia

    Get PDF
    L’Europa è di casa a Radio Colonia, l’emittente italiana del WDR, Westdeutscher Rundfunk, l’ente radiotelevisivo pubblico del Land Nord Reno-Westfalia, che il primo dicembre scorso ha celebrato il mezzo secolo di vita. Il suo direttore, Tommaso Pedicini, ricorda i motivi che portarono alla nascita della Radio, nel 1961, in un periodo in cui esplodeva il fenomeno dell’emigrazione italiana in Germania ed i Gastarbeiter (“lavoratori ospiti”) italiani avevano bisogno di una voce amica. Da allora molti sono stati i cambiamenti, ma Radio Colonia è rimasta la finestra italiana nel panorama radiofonico tedesco, impegnata in particolare, dopo l’avvio nel 1999 della Funkhaus Europa, a coltivare i temi del plurilinguismo e dell’integrazione degli immigrati

    The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum

    Get PDF
    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ54 and the σ54-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment

    Haem-iron plays a key role in the regulation of the Ess/Type VII secretion system of <i>Staphylococcus aureus</i> RN6390

    Get PDF
    This study was supported by the Wellcome Trust (through Investigator Award 10183/Z/15/Z to T. P. and through Clinical PhD studentship support to C. P. H. through grant 104241/z/14/z), the Biotechnology and Biological Sciences Research Council and the Medical Research Council (through grants BB/H007571/1 and MR/M011224/1, respectively).The Staphylococcus aureus type VII protein secretion system (T7SS) plays important roles in virulence and intra-species competition. Here we show that the T7SS in strain RN6390 is activated by supplementing the growth medium with haemoglobin, and its cofactor haemin (haem B). Transcript analysis and secretion assays suggest that activation by haemin occurs at a transcriptional and a post-translational level. Loss of T7 secretion activity by deletion of essC results in upregulation of genes required for iron acquisition. Taken together these findings suggest that the T7SS plays a role in iron homeostasis in at least some S. aureus strains.Publisher PDFPeer reviewe
    corecore