86 research outputs found

    Birth weight and blood lipid levels in Spanish adolescents: Influence of selected APOE, APOC3 and PPARgamma2 gene polymorphisms. The AVENA Study

    Get PDF
    Background There is increasing evidence indicating that genes involved in certain metabolic processes of cardiovascular diseases may be of particular influence in people with low body weight at birth. We examined whether the apolipoprotein (APO) E, APOC3 and the peroxisome proliferator-activated receptor-γ-2 (PPARγ2) polymorphisms influence the association between low birth weight and blood lipid levels in healthy adolescents aged 13–18.5 years. Methods A cross-sectional study of 502 Spanish adolescents born at term was conducted. Total (TC) and high density lipoprotein cholesterol (HDLc), triglycerides (TG), apolipoprotein (apo) A and B, and lipoprotein(a) [Lp(a)] were measured. Low density lipoprotein cholesterol (LDLc), TC-HDLc, TC/HDLc and apoB/apoA were calculated. Results Low birth weight was associated with higher levels of TC, LDLc, apoB, Lp(a), TC-HDLc, TC/HDLc and apoB/apoA in males with the APOE ε3ε4 genotype, whereas in females, it was associated with lower HDLc and higher TG levels. In males with the APOC3 S1/S2 genotype, low birth weight was associated with lower apoA and higher Lp(a), yet this association was not observed in females. There were no associations between low birth weight and blood lipids in any of the PPARγ2 genotypes. Conclusion The results indicate that low birth weight has a deleterious influence on lipid profile particularly in adolescents with the APOE ε3/ε4 genotype. These findings suggest that intrauterine environment interact with the genetic background affecting the lipid profile in later life.The AVENA study was supported by the Spanish Ministry of Health Instituto de Salud Carlos III (FIS PI021830), the Spanish Ministry of Health, FEDER-FSE funds FIS n° 00/0015, CSD grants 05/UPB32/0, 109/UPB31/03 and 13/UPB20/04, the Spanish Ministry of Education (AP-2004-2745; EX-2007-1124), scholarships from Panrico S.A., Madaus S.A. and Procter and Gamble S.A

    Reduced clinical and postmortem measures of cardiac pathology in subjects with advanced Alzheimer's Disease

    Get PDF
    Background. Epidemiological studies indicate a statistical linkage between atherosclerotic vascular disease (ATH) and Alzheimer\u27s disease (AD). Autopsy studies of cardiac disease in AD have been few and inconclusive. In this report, clinical and gross anatomic measures of cardiac disease were compared in deceased human subjects with and without AD. Methods. Clinically documented cardiovascular conditions from AD (n = 35) and elderly non-demented control subjects (n = 22) were obtained by review of medical records. Coronary artery stenosis and other gross anatomical measures, including heart weight, ventricular wall thickness, valvular circumferences, valvular calcifications and myocardial infarct number and volume were determined at autopsy. Results. Compared to non-demented age-similar control subjects, those with AD had significantly fewer total diagnosed clinical conditions (2.91 vs 4.18), decreased coronary artery stenosis (70.8 vs 74.8%), heart weight (402 vs 489 g for males; 319 vs 412 g for females) and valvular circumferences. Carriage of the Apolipoprotein E-ε4 allele did not influence the degree of coronary stenosis. Group differences in heart weight remained significant after adjustment for age, gender, body mass index and apolipoprotein E genotype while differences in coronary artery stenosis were significantly associated with body mass index alone. Conclusions. The results are in agreement with an emerging understanding that, while midlife risk factors for ATH increase the risk for the later development of AD, once dementia begins, both risk factors and manifest disease diminish, possibly due to progressive weight loss with increasing dementia as well as disease involvement of the brain\u27s vasomotor centers. © 2011 Beach et al; licensee BioMed Central Ltd

    Morphological and Pathological Evolution of the Brain Microcirculation in Aging and Alzheimer’s Disease

    Get PDF
    Key pathological hallmarks of Alzheimer’s disease (AD), including amyloid plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1) nonagenarians with AD and a high amyloid plaque load; 2) nonagenarians with no dementia and a high amyloid plaque load; 3) nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND) group (average age 71 years) with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular “dysfunction” compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD

    Nutrition, growth and resilience of tiger grouper(Epinephelus fuscoguttatus) 3 giant Grouper (Epinephelus lanceolatus) hybrid- a review

    Get PDF
    The hybrid grouper discussed in this paper is a cross between female tiger grouper (Epinephelus fuscoguttatus) and male giant grouper (Epinephelus lanceolatus). Performed for the first time at this institute, the hybridization was motivated by the need to meet grouper demand. The hybrid has been a subject of thorough scientific investigations ever since it was produced. Qualities such as dietary needs, efficiency in growth and production and environmental resilience are of considerable aquaculture advantage, and account for interest in its commercial‐scale farming in the wider Asia‐Pacific region. This paper reviews scientific evidences on tolerance of hybrid grouper to environmental variability, nutrition, growth and genetic and other aspects. It makes serious attempt to summarize the pertinent data published on specific research questions to improve understanding of the diverse evidences, and to be able to identify gaps in knowledge. This has helped in articulating the current state of research and defining topics for future studies on the hybrid. From the analysis of published data it is obvious that hybrid has a higher production potential and resilience. Nevertheless, the hybrid is vulnerable to health problems linked to nutritional deficiencies and other factors. More comprehensive data on dietary requirements of the hybrid, especially larval stages, will help in formulating feeds that cater to metabolic requirements and improve the survival and biomass gains. Information on hybrid's dietary flexibility can be used in developing feeds for grow‐out stages comprising ingredients from sustainable sources. The hybrid could be a suitable candidate for adapting aquaculture to climate change

    Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration

    Get PDF
    Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci, and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explain 4.25% of the variance in triglyceride level. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles.</p

    Polyamines and cancer: old molecules, new understanding

    Full text link
    The amino-acid-derived polyamines have long been associated with cell growth and cancer, and specific oncogenes and tumour-suppressor genes regulate polyamine metabolism. Inhibition of polyamine synthesis has proven to be generally ineffective as an anticancer strategy in clinical trials, but it is a potent cancer chemoprevention strategy in preclinical studies. Clinical trials, with well-defined goals, are now underway to evaluate the chemopreventive efficacy of inhibitors of polyamine synthesis in a range of tissues
    corecore